MARCA4
4-Bit Microcontroller
Programmer’s Guide

1996

|. Hardware Description

ll. Instruction Set

lll. Programming in gFORTH

V. gFORTH Language Dictionary

Addresses

TEMIC

MARC4 Programmer’s Guide

TELEFUNKEN Semiconductors Table of Contents
Contents
l. Hardware DesCription e 1
1 MARGCA ArChiteCtUre. o 2
1.1 General DescCriplion e 2
1.2 Components Of MARCA COre.ottt e e e e 3
121 Program Memory (ROM). e 3
1.2.2 Data Memory (RAM) 3
1.2.3 REISIEIS . . .o 4
1.24 ALU e e 6
1.25 INSEIUCHION Sel. . . . 7
1.2.6 O BUS. . .ot e 7
1.2.7 INterrupt StrUCTUIE. 8
Software INterruptso 9
Hardware INterrupts.o 10
1.3 RSB, . .o 11.
1.4 Sleep MoOde 11
15 EMUIAtioN e 11.
15.1 Stand Alone EPROM Boardst 12
1.5.2 MARC4 Emulation Mode and Interface Signals. 13
1. INSITUCHION Sl . . . o oo e e e 15.
2 MARCA INSIrUCHION SetL. e 17
2.1 INFOAUCTION.o e e e 17.
211 Description of Used Identifiers and Abbreviations. 19
2.1.2 Stack NOtatioN. 19
2.2 The gFORTH Language - Quick Reference Guide 24
221 Arithmetic/Logical. 24
222 COMPANISONS . .« o o ottt e e e e 24
223 CoNtrol SEIUCLUNES. o o 25
224 Stack Operations.ottt 25
2.25 Memory Operationsottt e 26
2.2.6 Predefined StruCtures. 27
227 Assembler MNEMONICS. 27
. Programming in QFORTH 29.
3 Programming in gFORTH e e 31
3.1 Why Program in qFORTH 2. e 31
3.2 Language OVeIVIEWt e e e e e 32
3.3 The gFORTH Vocabulary: Words and Definitians. 34
3.3.1 Word Definitions oo 34
3.4 Stacks, RPN and COmMMENLS.ttt e e 34
34.1 Reverse Polish Notation e e 34
3.4.2 The qFORTH Stacks o e e e e i 35
3.4.3 Stack NOtation.o 35
344 COMMEBNES . . . 35

MARCA4 Programmer’s Guide TEMIC
Table of Contents TELEFUNKEN Semiconductors

Contents (continued)

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

Constantsand Variables. 36
351 CONStaANES. . . ot e 36
Predefined Constants. i e 36
3.5.2 Look-up Tables e 36
Variables and Arrays. 37
3.6.1 Defining ArraysS. e 37
Stack AllOCatioN. 37
3.7.1 Stack Pointer Initialisation. 38
Stack Operations, Readingand Writing. 38
3.8.1 Stack Operations.ottt 38
The Data Stacko 38
SV AP e 39
DUP,OVER and DROP o e e 39
ROT and <ROT . ..o e e 39
R> >R, R@ and DROPR. 39
Other Useful Stack Operations e 40
3.8.2 Reading and Writing (@, 1)« oo oo oo 41
3.8.3 Low Level Memory Operations.o oot 41
RAM Address Registers Xand.Y. i 41
Bit Manipulations iN RAM. i e 42
MARCA Condition COAES.ttt e e e 42
3.9.1 The CCR and the Control Operations. 43
Arithmetic Operations. e e 43
3.10.1 NUMDbDEr SY S EMS . . . e e 43
Single and Double Length Operatars. i 43
3.10.2 Addition and Subtraction. 43
3.10.3 Increment and Decrement. e 44
3.10.4 Mixed-length Arithmetic. e 44
3.10.5 BCD ArithmetiC. 44
DAA and DAS . . . 44
3.10.6 Summary of ArithmeticWords 45
LOgiCalS. . . .o e 45.
3.11.1 Logical Operators.o oo e 45
TOGGLE ..o 46
SHIFT and ROTATE Operations.o e e e e 46
COMIPANISONS .« & .ttt ettt e e e 47,
3.12.1 o e 47
3.12.2 o T e e 47
3.12.3 > T i 47

3.12.4 Comparisons Using 8-bitValues a7

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors Table of Contents

Contents (continued)

313 CoNntrol SITUCKIUIES. . . . o oo o e e e e 48
3.13.1 Selection Control StruCtures. e 49
IF o THEN L 49
The CASE StruCtUreo e e 49
3.13.2 Loops, Branchesand Labels. 50
Definite LOOPS . . . v v vttt 50
INdefinite LOOPS. . . ot 51
3.13.3 Branchesand Labels. 52
3.13.4 Arrays and Look-up Tables. 52
Array INdexing oo 52
Initializing and Erasing an Arrayo 52
Array Filling . ..o o 52
LOOPING iN @N AITAY. . . . ottt e e e 53
MOVING AITAYS . . ottt e e e e 53
ComMPANNG AMTAYS . « o . vttt e e 53
3.13.5 Look-up Tables. 53
3.13.6 TICKand EXECUTE o e 53
3.14 Making the Best Use of Compiler Directives. i e 56
3.14.1 Controlling ROM Placement.t e e 56
3.14.2 Macro Definitions, EXIT and ;;.ot e 56
3.14.3 Controlling Stack Side Effects 56
3.14.4 SINCLUDE DIreCtiVe . . . o oottt e e e e e e 57
3.14.5 Conditional Compilation. 57
3.14.6 Controlling XY Register Optimisations., 57
3.15 Recommended Naming Conventiansottt i e e 58
3.15.1 How to Pronounce the Symbals. 58
316 BOOK LISt . .ot 60.
3.16.1 Recommended BOOKSottt 60
3.16.2 General INterestot 60
gFORTH Language DiCtiONaryo e e 63
GFORTH DICHONAIY. ot ettt e e e e e e e e e 65
4.1 Preface. . . 65.
4.2 INrOAUCHION. 66.
4.3 Stack Related CoNVENtioNSo e 69
4.4 Flags and Condition Code Register. 70
4.5 MARC4 Memory Addressing Model. 71
4.6 Short FOrm DICHONAIY.t e 72
4.7 INAEX . o oo e e 83
AdAIESSES. . . ottt 453

|. Hardware Description

ll. Instruction Set

lll. Programming in gFORTH

V. gFORTH Language Dictionary

Addresses

TE MIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors Hardware Description

MARC4 Microcontroller

Introduction

The TEMIC MARC4 microcontroller family The standard members of the family have
bases on a low power 4-bit CPU core. Theelected peripheral combinations for a broad
modular MARC4 architecture is HARVARD range of applications.

like, high level language oriented and wel Lo A
sutable to realize high integrate rogramming is supported by an easy-to-use PC

. troll ith oty of licat ased software development system with a high
microcontrofiers with a variely ot application of, e language qFORTH compiler and an
customer specific on chip periphera

o , mulator board. The stack oriented
combinations. The MARC4 controller’s IOWmicrocontroller concept enables the qFORTH

voltage and low power consumption is perfe ompiler to generate compact and efficient
for hand-held and battery operated a\pplication,@IARC4 program code

Features

® 4-bit HARVARD architecture ® | ow power consumption

e High level language oriented CPU ® Power down mode

® 256 x 4-bit of RAM ® Various on-chip peripheral combination
e Up to 9 KBytes of ROM avallable

® 8 vectored prioritised interrupt levels ® High level programming language gFORTH
e Low voltage operating range ® Programming and testing is supported by an

integrated software development system

01/96 1

MARC4 Programmer’s Guide TE MIC
Hardware Description TELEFUNKEN Semiconductors

1 MARC4 Architecture

1.1 General Description

The MARC4 microcontroller consists of anand a simultaneous communication to the
advanced stack based 4-bit CPU core amh-chip peripheral circuitry.
application specific on-chip peripherals like I/

. C)I'he integrated powerful interrupt controller
ports, timers, counters, ADC, etc. d P P

with eight prioritized interrupt levels supports
The CPU is based on the HARVARDfast processing of hardware events.

architecture with physically separate progra - . -
memory (ROM) and data memory (RAM)The MARC4 is designed for the high level

Th g q b he i) rogramming language gFORTH. A lot of
ree independent buses, the Instruction-, e ST instructions and two stacks, the Return
memory- and the I/O bus are used for parall

tack and the Expression Stack, are already

Communication. between ROM, RAM ne mplemented. The architecture allows high level
peripherals. Th_|s enhan_ces program execgt'?éhguage programming without any loss in
speed by allowing both instruction prefemh'ngefﬁciency and code density

MARC4 CORE

X
RAM
=
SP 256 x 4-bit
RP

Instruction
bus <

Memory bus

Instruction
decoder

Interrupt
controller

1/0 bus

Application
specific
peripherals

Interrupt

1/0O ports Timer .
inputs

‘ ‘ On-chip peripheral modules

{} U 94 8711

Figure 1. MARC4 core

2 01/96

TE MIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors Hardware Description

1.2 Components of MARC4 Core Each ROM bank has a size of 2 Kbytes and is
Th ins th ROM laced above the base bank in the upper 2K
€ core contains the program memory (800h—FFFh) of the address space. Thus

data memory (RAM), ALU, Program C:Oum(:"r’enables program memory sizes of up to 10

RAM Address Register, instruction decoder anI(\jbytes. 1 Kbyte of bank 3 are normally reserved
interrupt controller. The following section

q i h of thi : Sfor test software purposes. After any hardware
escribe each of this parts. reset ROM Bank 1 is selected automatically.

The program memory starts with a 512 byte
121 Program Memory (ROM) segment (Zero Page) which contains predefined

The MARC4's program memory contains thétart addresses for interrupt service routines and
customer application program. The 12-bit widéPecial subroutines accessible with single byte
Program Counter can address up to 4 Kbytesiggtructions (SCALL). The corresponding
program memory. The access of prografemory map is shown in figure 2.

memory with more than 4 K is possible using thepok-up tables of constants are also been held in

bank switching method. One of 4 memory bank3OM and are accessed via the MARC4 built in
can be selected with bit 2 and 3 of the 1/0O-Port FABLE instruction.

MARC4 self test routines— %Eéa
., IE0h 1EOh- INT7
Port D: 11xxp @ |
2 | =] 1coh INTE
Port D: 10xxb £ | 180n-— INTS
FFF ' ' S | Zero 140h— INT4
Port D: 01xxb = } page | 100h— INT3
< \ 0COh- INT2
. o |
800 Port D: 00xxb 5 } | 080h— INT1
TP Basebank oaoh 040h— INTO
8188
1FFH $RESET
000H__Z€ro page 860h 888hh: $AUTOSLEEP
94 8709
Figure 2. ROM map
1.2.2 Data Memory (RAM) arithmetic, 1/0 and memory reference

The MARC4 tai 256 x 4-bit wide st t-é)pe:\rations take their ope_rands from, and return
Raidom Accggg Sller:]rsngry (RXM). :t :/;” uiesdaf(l)}helr result to the Expression Stack. The MARC4

the Expression Stack, the Return Stack and B&f0rms the operations with the top of stack

data memory for variables and arrays. The RANEMS (TOS and TOS-1). The TOS register

is addressed by any of the four 8-bit wide RANONtains the top element of the Expression Stack

Address Registers SP, RP, X and Y and works like an accumulator.
Expression Stack This stack is also used for passing parameters

between subroutines, and as a scratchpad area
The 4-bit wide Expression Stack is addressegr temporary storage of data.

with the Expression Stack Pointer (SP). All

01/96 3

MARC4 Programmer’s Guide TEMIC

Hardware Description TELEFUNKEN Semiconductors
RAM
(256 x 4-bit) Expression Stack
3\ T T 0
Fch | | FFh TOS
1 p TOS-1|«— SP
— I— Global TOS-2
T variables
x—> | |

SR S < 4-bit—»
.. Y I
o
@ ;
§ | ExpressiorStack Return Stack
% SP 1]\. T T T T T T T T 0
@ <«— RP
S Return Stack
2 | R
2 RP —
& ——_ Global

07h variables
03h le——12-bit——»
94 8710
Figure 3. RAM map

Return Stack Program Counter (PC)

The 12-bit wide Return Stack is addressed by tiée Program counter (PC) is a 12-bit register
Return Stack Pointer (RP). It is used for storinthhat contains the address of the next instruction
return addresses of subroutines, interrupp be fetched from the ROM. Instructions

routines and for keeping loop index countergurrently being executed are decoded in the
The return stack can also be used as a temporastruction decoder to determine the internal
storage area. The MARC4 Return Stack stantsicro-operations.

with the AUTOSLEEP vector at the RAM For linear code (no calls or branches) the

chatlc_Jn FCh and increases in the addrefﬁogram counter is incremented with every
direction 00h, 04h, 08h, ... to the top. instruction cycle. If a branch, call, return
The MARC4 instruction set supports thenstruction or an interrupt is executed the
exchange of data between the top elements of fn@gram counter is loaded with a new address.

ex%(esi,llogzr&/cli;he Return ita;_ck.t')l;he two Sta(*ﬁe program counter is also used with the table
within the ave auseraetinable maximuihgyction to fetch 8-bit wide ROM constants.

depth.
RAM Address Register

1.2.3 Registers X dd 4 with the four 8-bit wid
. The RAM is addressed with the four 8-bit wide
The MARCA4 controller has six programmabIeRAM address registers SP, RP, X and Y. This

registers af‘d one con(_JIition code register. Th'f'é(gisters allow the access to any of the 256 RAM
are shown in the following programming modelnibbles

4 01/96

TEMIC MARC4 Programmer’s Guide

TELEFUNKEN Semiconductors Hardware Description
11 0
T T 1
PC Program Counter
1 [
7 0
T T T
RP 0 O Return Stack Pointer
[|
7 0
T 1
Sp Expression Stack Pointer
[
7 0
1
X RAM Address Register (X)
[
7 0
1
Y RAM Address Register (Y)
[]
3 0
I
TOS Top of Stack Register
0
I I I
CCR C — B I Condition Code Register
| |
L |Interrupt enable
Branch
unused
Carry / Borrow 94 8707

Figure 4. Programming model

Expression Stack Pointer (SP) allocate the start address of the Expression Stack

The stack pointer (SP) contains the address of A&
next-to-top 4-bititem (TOS-1) of the ExpressioiReturn Stack Pointer (RP)

Stack. ~ The pointer is automatlcally-l-he Return Stack pointer points to the top

pre-incremented if a nibble is pushed onto thge o0t of the 12-bit wide Return Stack. The
stack or post-decremented if a nibble is removed. .. automatically pre-increments if an

from the stack. Every post-decrement operati . -
)) ement is moved onto the stack or it
moves the item (TOS-1) to the TOS regist

before the SP is decremented. the stack. The Return Stack Pointer increments

After areset the stack pointer has to be initializexhd decrements in steps of 4. This means that
with the compiler variable SO (* >SP S0 ”) toevery time a 12-bit element is stacked, a 4-bit

01/96 5

MARC4 Programmer’s Guide TE MIC
Hardware Description TELEFUNKEN Semiconductors

RAM location is left unwritten. These locationTOG_BF, CCR! and DI allow a direct
are used by the gFORTH compiler to allocatemanipulation of the Condition Code Register.
4-bit variables.

To support the AUTOSLEEP feature, read ?”Fhe Carry/Borrow flag indicates that borrow or

write operations to the RAM address FCh using, . . : :
: ry out of Arithmetic Logic Unit (ALU)
the Return Stack Pointer are handled on a spegialy e during the last arithmetic operation.

way. Read operations will return the autosleggin g shift and rotate operations this bit is used

address 000h, whereby write operatins_have 9 fifth bit. Boolean operations have no affect on
affect.After a reset the Return Stack Pointer hﬁ,?

to be initialized with “ >RP FCh ”. e Carry flag.

. Branch (B
RAM Address Register (X and Y) ®)
The Branch flag controls the conditional

The X- and Y-register are used to address a \ :
i : : ogram branching. When the Branch flag was
4-bit element in the RAM. A fetch operatlonB g J g

) set by one of the previous instructions a
moves the addressed nibble onto the TOS. y P

; he TOS to the add ¢onditional branch is taken. This flag is affected
store opergtlon moves the tothe a r(':'Ssl§‘3d1arithmetic, logic, shift, and rotate operations.
RAM location.

Using either the pre-increment _
post-decrement addressing mode it is convenieHte Interrupt Enable flag enables or disables the

to compare, fill or move arrays in the RAM. interrupt processing on a global basis. After reset
or by executing the DI instruction the Interrupt
Top of Stack (TOS) y g P

Enable flag is cleared and all interrupts are
The Top of Stack Register is the accumulator disabled. TheuC does not process further
the MARCA4. All arithmetic/logic, memory interrupt requests until the Interrupt Enable flag
reference and I/O operations use this registés. set again by either executing an El, RTI or
The TOS register gets the data from the ALU, tHeL EEP instruction.

ROM, the RAM or via the I/O bus. 124 ALU

Carry/Borrow (C)

orInterrupt Enable (1)

Condition Code Register (CCR) The 4-bit ALU performs all the arithmetic,

The 4-bit wide Condition Code Registeftogical, shift and rotate operations with the top

contains the branch, the carry and the interrupto elements of the Expression Stack (TOS and

enable flag. These bits indicates the current stat®©S-1) and returns their result to the TOS. The

of the CPU. The CCR flags are set or reset l4LU operations affect the Carry/Borrow and

ALU operations. The instructions SET_BCFBranch flag in the Condition Code
Register (CCR).

RAM f
SP [+ TOS-1 TOS
TOS-2
TOS-3

TOS—4 N
l_’ ALU
94 8977

Figure 5. ALU zero address operations

6 01/96

TE MIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors Hardware Description

1.25 Instruction Set There are one and two byte instructions which

The MARC4 instruction set is optimized for the!'® executed within 1 to 4 machine-cycles. Most

high level programming language qFORTH. A’f the instructions have a length of one byte and

lot of MARC4 instructions are gFORTH words2r€ executed in only one machine cycle.

This enables the compiler to generate fast adcomplete overview of the MARC4 instruction
compact program code. set includes the table instruction set.

The MARC4 is a zero address machine with MIARC4 Instruction Timing

compact and efficient instruction set. Thel’he internal instruction timing and pipelining

instructions contain only the operation t0 bg iy the MARC4's instruction execution are
performed and no source or destination addregs, 1 in figure 6

information. The operations are performed wit
the data placed on the stack. The figure shows the timing for a sequence of

three instructions. A machine cycle consists of

A instruction pipeline enables the controller Qo system clock cycles. The first and second

f_etch the next mstru_ctlon frqm ROM. atthe sam struction needs one and the third two maschine
time as the present instruction is being execut

cles.

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

I I I I I I

I
ewsvsey ||)) L) L) L L) L) L] L

I I
ROM read | |Instr 1 Instr 2

I I
Decode i Instr 1:

ST S
Execute | | Instr 1]

94 8712
Figure 6. Instruction cycle (pipelining)

1.2.6 I/O Bus are sent, when N_Cycle is high the data

The communication between the core and tISES‘SngYtEV:rZ trg;lesfe?:e%her priority - Interrupts

on-chip peripherals takes place via the I/O bus”
This bus is used for read and write accesses, fam IN operation transfers the port address from
interrupt requests, for peripheral reset and for tR@©S (top of stack) onto the I/O bus and read the
SLEEP mode. The operation mode of the 4-hitata back on TOS. An OUT operation transfers
wide I/O bus is determined by the control signalsoth the port address from TOS and the data from
N_Write, N_Read, N_Cycle and N_Hold. (sedOS-1 onto the I/O bus.

table I/O bus modes). Note that the interrupt controller samples
During IN/OUT operations the address and dataterrupt requests during the non-1/0O cycles
and during an interrupt cycle for the low and th#nerefore IN and OUT instructions may cause an
high priority interrupts are multiplexed using thenterrupt delay. To minimize interrupt latency
N_Cycle signal. When N_Cycle is low theavoid immediate consecutive IN and OUT
address respectively the low interrupts ‘0,1,2,3hstructions.

01/96 7

MARC4 Programmer’s Guide TE MIC
Hardware Description TELEFUNKEN Semiconductors

Table 1. 1/0O bus modes

Mode N _Read | N _Write | N_Cycle | N_Hold I/O Bus

I/O read (address cycle) 0 1 0 1 X
I/O read (data cycle) 0 1 1 X X
I/O write (address cycle) 1 0 0 1 X
I/O write (data cycle) 1 0 1 1 X
Interrupt O to 3 cycle 1 1 0 1 X
Interrupt 4 to 7 cycle 1 1 1 1 X
Sleep mode 0 0 0 1 0
Reset mode 0 0 X 0 Fh
TCL/SYSCL |
(N_Hold=1) | | | o o o

\ \ \
| | | | | | |
nowe 1\ T T
\ |
\ \ \
OUT mstfuctmh cycl(
!
|
\
|

N_Write

\

\ \

| | |

\ \ \

| | |

| | | |

N_Read } } } }

\
|
\
\
\
IN} mstr#cnon Eycle /

\ \

\
I/0 bus nt0—3\ /|nt4-7\ ‘/Add\ /Dat& / |nto—§ / Int4—XK /Adé&r /DaM@

Figure 7. Timing for IN/OUT operations and interrupt requests

The 1/0 bus is internal and therefore nolnterrupt Processing
accessible by the customer
microcontroller.

More about the access to on-chip peripherals
described in the chapter peripheral modules.

on the f'n‘?\lo process the eight different interrupt levels the
MARC4 contains an interrupt controller with the
8bit wide Interrupt Pending and Interrupt
Active Register. The interrupt controller
samples all interrupt requests on the 1/0O bus
1.2.7 Interrupt Structure during every non-1/O instruction cycle and

The MARC4 can handle interrupts with eigh{atCh?S them @nt'he !nterrupt Pending Register. I
different priority levels. They can be generate o higher priority interrupt Is present in the
from internal or external hardware interrup nterrupt Active Register it signals the CPU to

sources or by a software interrupt from the CPL']:e””pE the l;urg_etn_t protgi;]am execution. Itf the
itself. Each interrupt level has a hard-wired"-c/TuUPt €nabie bit IS SEL Ihe processor enters an

- : - Interrupt acknowledge cycle. During this cycle a
priority and an associated vector for the servid
routine in the ROM (see Table 2). Th HORT CALL instruction to the service routine

programmer can enable or disable interrupts AT executed and the 12-bit wide current PC is
together by setting or resetting éaved on the Return Stack automatically.

interrupt-enable flag (1) in the CCR.

8 01/96

TE MIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors Hardware Description

INT7

T INT7 active

RTI
INT5

ST INT5 active

INT3 RTI

INT2

Priority level
SN

3T INT3 activ
RTI

24 INT2 pending INT2 activg

RTI
1+ SWIO

0+ INTO pending INTO activ

RTI

Main /Autoslee| Main /Autoslee%

Time
94 8978

Figure 8. Interrupt handling

An interrupt service routine is finished with thdnterrupt Latency
RTI instruction. This instruction sets theT
Interrupt Enable flag, resets the correspondi
bits in the Interrupt Pending/Active Register an
moves the return address from the Return St

to the Program Counter.

he interrupt latency is the time from the

currence of the interrupt event to the interrupt
rvice routine being activated. In the MARC4

s takes between three to five machine cycles
depending on the state of the core.

When the Interrupt Enable flag is reset
(interrupts are disabled), the execution of
interrupts is inhibited but not the logging of the
interrupt requests in the Interrupt Pendinhe programmer can generate interrupts using
Register .The execution of the interrupt will behe software interrupt instruction (SWI) which is

delayed until the Interrupt Enable flag is sedupported in qFORTH by predefined macros
again. But note that interrupts are lost if aamed SWIO0...SWI7. The software triggered

interrupt request occurs during thenterrupt operates exactly like any hardware
corresponding bit in the Pending Register is stiltiggered interrupt. The SWI instruction takes

set. the top two elements from the Expression Stack

After any hardware reset (power-on, external &§nd writes the corresponding bits via the I{O bus
watchdog reset) the Interrupt Enable flag, th@ the Interrupt Pending Register. Thus using the
Interrupt Pending and Interrupt Active Registe$W| instruction, interrupts can be re-prioritized
are reset.

Software Interrupts

01/96 9

MARC4 Programmer’s Guide TE MIC
Hardware Description TELEFUNKEN Semiconductors

or lower priority processes scheduled for lateautomatically event controlled program flow.
execution. The different vectored interrupts permits
program dividing into different interrupt

_ _ controlled tasks.
Hardware interrupt sources like external

interrupt inputs, timers etc. are used for an fast

Hardware Interrupts

Interrupt even%Y INT3

TCL/SYSCL \

lp. Interrupt request

I/O bus u

Interrupt
INT5 : INTO——— acknowl. INT3
Instruction ANDXLIT_SX ADD)_(CCR@X LIT_5XLIT_E>
Interrupt regiter:— FeNdng: 240y Pending:oih _y, _Pendng:goh . Pendng- oo
Figure 9. Interrupt request cycle
Table 2. Interrupt priority table
Interrupt Priority ROM Address Interrupt Opcode Pending/
(Acknowledge) Active Bit
INTO lowest 040h C8h (SCALL 040h) 0
INT1 080h DOh (SCALL 080h) 1
INT2 0COh D8h (SCALL 0CO0h) 2
INT3 100h EOh (SCALL 100h) 3
INT4 140h E8h (SCALL 140h) 4
INTS 180h FOh (SCALL 180h) 5
INT6 1COh F8h (SCALL 1CO0h) 6
INT7 highest 1EOh FCh (SCALL 1EOh) 7

10 01/96

TE MIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors Hardware Description

1.3 Reset 1.4 Sleep Mode

The reset puts the CPU into a well-defined@he sleep mode is a shutdown condition which
condition. The reset can be triggered bis used to reduce the average system power
switching on the supply voltage, by aconsumption in applications where {@ is not
break-down of the supply voltage, by thdully utilised. In this mode the system clock is
watchdog timer or by pulling the NRST pad tstopped. The sleep mode is entered with the
low. SLEEP instruction. This instruction sets the
Eterrupt Enable bit (I) in the Condition Code

Condition Code Register (CCR), the Interrup egister to enable all interrupts and Stops the
Pending Register and the Interrupt Activ&©e: During the sleep mode the peripheral

: : dules remain active and are able to generate
Register are reset. During the reset cycle the /8P : .
bus control signals are set to ‘reset moddPterrupts. ThauC exits the SLEEP mode with

thereby initializing all on-chip peripherals. any interrupt or a reset.

After any reset the Interrupt Enable flag in th

The reset cycle is finished with a short caIThe sleep mode can only be kept when none of

- : Interrupt Pending or Active Register bits are
instruction (opcode C1h) to the ROM—addres@e o :
008h. This activates the initialization routinecl: 1he application of SAUTOSLEEP routine

SRESET. With that routine the stack IDOirlter£nsure5 the correct function of the sleep mode.

variables in the RAM and the peripheral must bEhe total power consumption is directly

initialized. proportional to the active time of ti€. For a
rough estimation of the expected average system
current consumption, the following formula
should be used:

ltotal = Isleep* (IDD * Tactive / Ttotal)
Ipp depends on Mp and bse

INTS 4
TCL/SYSCL

| Interrupt acknowledge

Instruction NOP | SLEEF [SET_BFQ SBRA $Autosleep| SCALL INTS >C

—
-

INt0—3 Int4—7 Int0=3 | Int4—7 Int0—3 Int4—7Int0-3

vowss [L /Y LA A UV VIV

94 8703

Figure 10. Timing sleep mode

1.5 Emulation in real time. Thus permits the analysis of any
timing, hardware or software problem.For

The basic function of emulation is to test an énulation puposes all MARC4 controllers

evaluate the customer’s program and hardwar

01/96 11

MARC4 Programmer’s Guide TE MIC
Hardware Description TELEFUNKEN Semiconductors

include a special emulation mode. In this modéhe MARC4 emulator uses this mode to control
the internal CPU core is inactive and the I/@he peripherals of any MARCA4 controller (target
buses are available via Port 0 and Port 1 to allaskip) and emulates the lost ports for the
an external access to the on-chip peripherabgpplication.

MARC4 emulator Emulator target board
Program MARC4 MARCA4 target chip
emulation—CPU

memory
1/0 bus
Trace <: CORE

memory
I/O controlbus
Peripherals
4 IPortO‘ l Port:ﬂ _
Control TCL,RST,
logic TE

Application specific hardware

Personal computer

94 8700

Figure 11. MARC4 emulation

A special evaluation chip (EVC) witha MARC4MARC4 peripheral configurations and the
core, additional breakpoint logic and programustomers hardware. For more information
memory interface takes over the core functioabout emulation see “Emulator Manual”

and executes the program from an external RAM

on the emulator board.
151 Stand Alone EPROM Boards

The MARC4 emulator can stop and restart a

program at specified points during execution, "€ €valuation chip (EVC) is used with an

making it possible for the applications engineérXtéfnal EPROM to build stand alone and mobile
to view the memory contents and those cgfus'Fomer prototype boe_lrds, if no OTP device is
various registers during program execution. THevailable. The emulation CPU executes the
designer also gains the ability to analyze tHgogram in the EPROM and controls the

executed instruction sequences and all the \R§TIpherals Of the customer MARCA.',S or
activities. prototype peripheral modules with discrete

standard CMOS parts. Thus permitting to use

The emulator is a plug-in board for a P&arious peripheral modules before they are
(IBM-AT) with comfortable PC user interfaceayajlable as integrated MARC4 on-chip

software. It is independent from differeniyeripherals.(see Figure 12).

12 01/96

TE MIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors Hardware Description

Mode
Reset | RST

TCL

Clock Target chip

EPROM
Address

Peripherals

L

Stand alone target board Application specific hardware

94 8702

Figure 12. Stand alone target board

152 MARC4 Emulation Mode and After the emulation mode is activated the core is
Interface Signals switched off. The pins of Port 0 and Port 1 are

The MARC4 emulation mode can be activateﬁsed for the 1/0 bus and the I/O control signals

by special test pins. There are MARC4 type iexternal interfa(_:ehto tf|1e on cgwip periptlwle:jals.
with either the TST1 and TST2 pin or the TE pin e access to peripherals can be controlied by

The emulation mode is activated with the TCIEhe four control signals at Port 1 and the external

and TE pin or with TCL, TST1 and TST2 pin orf!0ck @t TCL pin. MARCA4 types with OD pin are
the following way! ’ supported with an additional a signal at this pin

to control the data direction of the I/O bus at

TCL low during reset Port 1. The following table shows all interface
TE high signals which are available during the emulation

TST1 high mode.

TST2 low

Table 3. MARC4 emulation mode interface signals

Port O Port 1
BP0O3 | BP02 | BPO1 | BPOO BP13 BP12 BP11 BP10 TCL oD
I/O I/O0 I/O I/O0 N_Hold | N_Write | N_Read|N_Cycle|SYSCL| 1/O
Bus3 Bus2 Busl BusO Direc-
tion

For more and detailed information about emulation refer to the MARC4 emulator manual.

01/96 13

|. Hardware Description

Il. Instruction Set

lll. Programming in gFORTH

V. gFORTH Language Dictionary

Addresses

TE MIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors Instruction Set

2 MARC4 Instruction Set

2.1 Introduction

Most of the MARC4 instructions are single byteghe operation and not the source or destination
instructions. The MARCA4 is a zero address machiragldresses of the data. Altogether there are five types
where the instruction to be performed contains onlyf instruction formats for the MARC4 processor.

Table 1. MARC4 opcode formats

opcode

1) Zero address operation ‘7| 6| 5| 4| 4 i i J)
(ADD, SUB, etc...)

2) Literal opcode data
(4-bit data) ‘ 3| 2| JJ d ‘ 3| 2| JJ d

opcode address

3) Short ROM address
(6-bit address, 2 cycles) ‘ 1| O| ‘ 5| 4| 3| 2|]I d

" ROM add opcode address
: (f;-gbit aderss,reZsiycles) ‘3| ZI]J d ‘11]10| 9| d 7| 6| 5| 4| 3| 2| 1| d

5) Long RAM address opcode address
(8-bit address, 2 cycles) ‘7| 6| 5| 4| 4 :1 i J) ‘7| 6| 5| 4| 4 4 1 &)

A Literal is a 4-bit constant value which is placed oithe MARC4 instruction set includes both short and
the data stack. In the MARC4 native code they ateng call instructions as well as conditional branch
represented alsIT_<value>, where <value> is theinstructions. The short instructions are single byte
hexadecimal representation from 0O to 15 (0..F). Thisstructions, with the jump address included in the
range is a result of the MARC4’s 4-bit data width. instruction. On execution, the lower 6-bits from the
The |Ong RAM address format is used by the fodpstruction word are direCtIy loaded into the PC.
8-bit RAM address registers which can be&hort call (SCALL) and short branch (SBRA)
pre-incremented, post-decremented or loadédstructions are handled in different wagsCALL
directly from the MARC4's internal bus. This resultgumps to one of 64 evenly distributed addresses
in an direct accessible RAM address space of upwgthin the zero page (from 000 to 1FF hex). The short
256 x 4-Dit. branch instruction allows a jump to one of 64

The 6-bit short address and the 12-bit long addre@ddresses contained within the current page. Long
formats are both used to address the byte-wide ROMNP instructions can jump anywhere within the
via call and conditional branch instructions. ThiROM area. TheCALL and SCALL instructions

results in an ROM address space of up te 8kbit Write the incremented Program Counter contents to
words. the Return Stack. This address is loaded back to the

PC when the associat&XIT or RTI instruction is
encountered.

01/96 17

TEMIC

TELEFUNKEN Semiconductors

MARC4 Programmer’s Guide
Instruction Set

Table 2. Instruction set overview

00 ADD 10 SHL 20 TABLE 30 X@
01 ADDC 11 ROL 21 — 31 [+X]@
02 SUB 12 SHR 22 >R 32 X-1@
03 SUBB 13 ROR 23 I R@ 33 [>X]@ $xx
04 XOR 14 INC 24 e 34 [YI@
05 AND 15 DEC 25 EXIT 35 [+Y]@
06 CMP_EQ 16 DAA 26 SWAP 36 [Y-1@
07 CMP_NE 17 NOT 27 OVER 37 [>Y]@ $xx
08 CMP_LT 18 TOG_BF 28 2>R 38 [X]!
09 CMP_LE 19 SET_BCF 29 3>R 39 [+X]!
0A CMP_GT 1A DI 2A 2R@ 3A [X-]!
0B CMP_GE 1B IN 2B 3R@ 3B [>X]! $xx
ocC OR 1C DECR 2C ROT 3C [Y]!
oD CCR@ 1D RTI 2D DUP 3D [+Y]!
OE CCR! 1E SWi 2E DROP 3E [Y=]!
OF SLEEP 1F ouT 2F DROPR 3F [>Y]! $xx
40 CALL $0xx 50 BRA $0xx 60 LIT_O 70 SP@
41 CALL $1xx 51 BRA $1xx 61 LIT 1 71 RP@
42 CALL $2xx 52 BRA $2xx 62 LIT_2 72 X@
43 CALL $3xx 53 BRA $3xx 63 LIT_3 73 Y@
44 CALL $4xx 54 BRA $4xx 64 LIT 4 74 SP!
45 CALL $5xx 55 BRA $5xx 65 LIT_5 75 RP!
46 CALL $6xx 56 BRA $6xx 66 LIT_6 76 X!
47 CALL $7xx 57 BRA $7xx 67 LIT_7 77 Y!
48 CALL $8xx 58 BRA $8xx 68 LIT_8 78 >SP $xx
49 CALL $9xx 59 BRA $9xx 69 LIT_9 79 >RP $xx
4A CALL $AXx 5A BRA $Axx 6A LIT_A 7A >X $xx
4B CALL $Bxx 5B BRA $Bxx 6B LIT_B 7B >Y $xx
4C CALL $Cxx 5C BRA $Cxx 6C LIT_C 7C NOP
4D CALL $Dxx 5D BRA $Dxx 6D LIT_D 7D —_—
4E CALL $Exx 5E BRA $Exx 6E LIT_E 7E —_—
4F CALL $Fxx 5F BRA $Fxx 6F LIT_F 7F —_—
80..BF SBRA $xxx Short branch inside current page
CO..FF | SCALL $xxx Short subroutine CALL into 'zero page’

18

01/96

TEMIC MARC4 Programmer’s Guide

TELEFUNKEN Semiconductors

Instruction Set

2.1.1 Description of Used Identifiers and Abbreviations

nl n2 n3 Three nibbles on the Expression Stack RP

n3n2nl Three nibbles on the Return Stack
which combine to form a 12-bit word

Return Stack Pointer (8-bits), the RAM
Address Register which points to the
last entry on the return address stack.

un2nl Two nibbles on the Return Stack (i.e. X RAM Address Register (8-bits),
DO loop index and limit), ‘U’ is an Y RAM Address Register Y (8-bits),
unused (undefined) nibble on the these registers can be used in 3 different
Return Stack, addressing modes (direct,
n 1's complement of the 4-bit word n, g:j‘fj';ggg?rrln‘)anted or postdecremented
3210 Numbered bits within a 4-bit word, 9 , _
_ _ TOS Top of (Expressiontack (4-bits),
$xx 8-bit hexadecimal RAM address, . : . .
_ _ CCR Condition Code Register (4-bits), which
XXX 12-bit hexadecimal ROM address, contains:
PC Program Counter (12-bits), | [bit 0] Interrupt-Enable flag,
SP Expression Stack Pointer (8-bits), the g it 1] Branch flag,
RAM Address Register which points to o [
the RAM location containing the 0% [bit 2] Reserved (currently unused),
second nibble (TOS-1) on the C[bit3] Carry flag,
Expression Stack /IC NOT Carry (Borrow)flag.
2.1.2 Stack Notation
E(nln2—n) Expression Stack contents (rightmost 4-bit digit is in TOS)
R (nln2n3 —) Return Stack contents (rightmost 12-bit word is top entry)
RET (— ROMAddr) Return Address Stack effects
EXP (—) Expression / Data Stack effects
True condition = Branch flag set in CCR
False condition = Branch flag reset in CCR
n 4-bit data value (nibble)
d 8-bit data value (byte)
addr 8-bit RAM address
ROMAddr 12-bit ROM address
01/96 19

MARC4 Programmer’s Guide
Instruction Set

TELEFUNKEN Semiconductors

TEMIC

Code q . Symbolic Description Instr. Flags
[hex] Mnemonic Operation [Stack Effects] Cycles | C%BI
E (nln2 —nl+n2)
- If overflow
00 ADD Add the top 2 stack digits then B:=C:=1 1 XXX—
else B:=C:=0
E (n1 n2 — n1+n2+C)
Add with carry the top 2 If overflow _
01 ADDC stack digits then B:=C:=1 ! XXX
else B:=C:=0
, E (n1 n2 — nl1+/n2+1)
2's complement If overflow
02 SUB subtraction of the top 2 o 1 XX X—
digits then B:=C:=1
else B:=C:=0
, E (nl1 n2 — n1+/n2+/C)
1's complement If overflow
03 SUBB subtraction of the top 2 e 1 XX X—
diaits then B:=C:=1
9 else B:=C:=0
. E (nl1 n2 —nl XOR n2)
04 XOR E_X(_:Iuswe-OR top 2 stack If result=0 then B:=1 1 —XX~—
digits —
else B:=0
i E (nl1 n2 —nl AND n2)
05 AND B.'tW'Se'AND top 2 stack If result=0 then B:=1 1 —XX—-
digits —
else B:=0
Lo E (n1 n2 —nl1OR n2)
ocC OR B.'tW'Se'OR top 2 stack If result=0 then B:=1 1 —XX—
digits —
else B:=0
. E (nln2—nl)
06 CMP_EQ Equality test for top 2 If n1=n2 then B:=1 1 XX X —
stack digits -
else B:=0
. E (nln2—nl)
07 CMP_NE Inequal_lt)_/ test for top 2 If n1<>n2 then B:=1 1 XX X—
stack digits o
else B:=0
E (nln2—nl)
08 CMP_LT Less-than testfortop 2 | ¢ 1 25 hen pi=1 1 XXX —
stack digits .
else B:=0
E (nl1n2—nl)
09 CMP_LE Less-or-equal fortop 2 | ¢ 1y - 115 then B:=1 1 XXX —
stack digits o
else B:=0
E (nl1n2—nl)
0A CMP_GT Greater-than for top 2 If n1>n2 then B:=1 1 X X X —
stack digits =
else B:=0
E (nln2—nl)
0B CMP_GE Greater-or-equal for top 2| 11515 then B:=1 1 XX X —
stack digits __
else B:=0
OE CCR! Restore condition codes | E(n—)R (—) 1 X X X X
OF SLEEP _CPU in 'sleep mode’,, E(—)R(—) 1 Cx—1
interrupts enabled =1
: . C<—197>3210<—0
10 SHL Shift TOS left into carry B—C—MSB 1 XXX —
Rotate TOS left through | ..<—C<—3210<—C<—.. _
1 ROL carry B.=C:=MSB 1 xxx
. N 0—>3210—>C
12 SHR Shift TOS right into Carry B-=C.—LSB 1 XXX —

20

01/96

TEMIC

TELEFUNKEN Semiconductors

MARC4 Programmer’s Guide
Instruction Set

Code ; : Symbolic Description Instr. Flags
[hex] Mnemonic Operation [Stack Effects] Cycles | C%BI
Rotate TOS right through | ..—>C—>3210—>C—>.. _
13 ROR carry B:=C:=LSB ! XXX
E(n—n+l)
14 INC Increment TOS If result=0 then B:=1 1 —XX—
else B:=0
E(n—n-1)
15 DEC Decrement TOS If result=0 then B:=1 1 —XX—
else B:=0
If TOS>9 OR C=1
Decimal adjust for thenE (n—n+6) 1x1—
16 DAA addition (in BCD B:=C:=1 1 0x0—
arithmetic) elseE(n—n) R (—)
B:=C:=0
E(n—/n)
17 NOT 1's complement of TOS If result=0 then B:=1 1 —XX—
else B:=0
If B=1then B:=0
18 TOG_BF Toggle Branch flag else B-=1 1 —XX—
19 SET_BCF Set Branch and Carry flag| B:=C:=1 1 1x1-
1A DI Disable all interrupts E—(O_) R(—) 1 -x-0
. E (port —n)
1B [N Read data from 4-bitVO | ¢ 50110 then B:=1 1 —xx-
port —
else B:=0
. R (uun — uun-1)
1c DECR Decrement index on retur If n—1=0 then B:=0 2 -10-
stack ,_ -01-
else B:=1
Return from interrupt E(—) R($xxx—)
1D RTI routine; enable all PC := $xxx 2 -—-1
interrupts I:=1
. E(nin2—)R(—) Cx——
1E SWiI Software interrupt [M1,n2 = 0,1,2,4,8] 1 X
1F ouT Write data to 4-bit I/O port| E(nport—)R (—) 1 - X—-=
20 Fetch an 8-bit ROM E (—d[$xxx2])
01 TABLE constant and performs an| R ($xxx1 $xxx2 —) 3 -————
EXIT PC:=$xxx1
Move (loop) index onto E(n—) L
22 >R Return Stack R (— uun) !
| Copy (loop) index from E(—n)
23 R@ the Return Stack onto R (uun — uun) 1 -
TOS
24 Return E(—)R($xxx—) _
25 EXIT from subroutine ("; ") PC:=$xxx 2
26 SWAP Exchange the top 2 digits E E E ;]2 —n2nl) 1 ———
Push a copy of TOS-1 E(nln2—nln2nl) o
21 OVER onto TOS R(—) 1
Move top 2 digits onto E(nln2—) o
28 2R Return Stack R (— unln2) 3
Move top 3 digits onto E(nln2n3—) o
29 3R Return Stack R (— n1n2n3) 4
Copy 2 digits from Return| E (— nl1 n2) o
2A 2R@ to Expression Stack R (unln2 — unln2) 2
01/96 21

MARC4 Programmer’s Guide
Instruction Set

TEMIC

TELEFUNKEN Semiconductors

Code : q Symbolic Description Instr. Flags
[hex] Mnemonic Operation [Stack Effects] Cycles [C% B
Copy 3 digits from Return| E (— n1 n2 n3)
2B 3R@ to Expression Stack R (n1n2n3 — n1n2n3) 4 T
2c | ROT Move third digit onto TOS | %”in)z n3 —n2n3nl) 3 I
2D DUP Duplicate the TOS digit E E n Ry nn) 1 S
- E(n—)
26 | DROP the Exprossion Stack | R{=2) S
SP:=SP-1
Remove one entry from E(—)
2F DROPR the Return Stack R(uuu —) ! T
RP:=RP—4
Indirect fetch from RAM E(—n)
30 X]@ addressed by the X R(—) 1 ———
register X:=XY:=Y
Indirect fetch from RAM E(—n)
31 [+X]l@ addressed by R(—) 1 -
preincremented X register| X:=X+1 Y:=Y
Indirect fetch from RAM E(—n)
32 X-1@ addressed by the R(—) 1 -———
postdecremented X reg. | X:=X-1Y:=Y
Direct fetch from RAM E(—n)
33 xx [>X]@ $xx addressed by the X R(—) 2 -
register X:=$xx Y:=Y
Indirect fetch from RAM E(—n)
34 [Yl@ addressed by the Y R(—) 1 —-———
register X:=XY:=Y
Indirect fetch from RAM E(—n)
35 [+Y]@ addressed by R(—) 1 -
preincremented Y register| X:=XY:=Y+1
Indirect fetch from RAM E(—n)
36 [Y-l@ addressed by R(—) 1 o
postdecremented Y reg. | X:=XY:=Y-1
Direct fetch from RAM E(—n)
37 xx [>Y]@ $xx addressed by the Y R(—) 2 -
register X:=X Y:=$xx
Indirect store into RAM
38 X addressed by the X E(n—)R(—) X=X Y=Y 1 -———
register
Indirect store into RAM E(n—)
39 [+X]! addressed by R(—) 1 ————
pre-incremented X registef X:=X+1 Y:=Y
Indirect store into RAM E(n—)
3A [X=]! addressed by the R(—) 1 -————
postdecremented X reg. | X:=X-1 Y:=Y
Direct store into RAM E(n—)
3B xx [>X]! $xx addressed by the X R(—) 2 ———
register X:=$xx Y:=Y
Indirect store into RAM E(n—)
3C Yy addressed by the Y R(—) 1 ————
register X=X Y=Y

22

01/96

TEMIC

TELEFUNKEN Semiconductors

MARC4 Programmer’s Guide

Instruction Set

Code . : Symbolic Description Instr. Flags
[hex] Mnemonic Operation [Stack Effects] Cycles | C%BI
Indirect store into RAM E(n—)
3D [+Y]! addressed by R(—) 1 ————
pre-incremented Y registef X:=X Y:=Y+1
Indirect store into RAM E(n—)
3E [Y-]! addressed by the R(—) 1 ————
post-decremented Y reg. | X:=X Y:=Y-1
Direct store into RAM E(n—)
3F xx [>Y]! $xx addressed by the Y R(—) 2 ———
register X:=X Y:=$xx
Fetch the current E (— SPh SPI+1)
70 sP@ Expression Stack Pointer | R(—) 2 T
P SP:=SP+2
Fetch current Return Stack E (— RPh RPI) L
n RP@ Pointer R(—) 2
Fetch current X register E (— Xh XI) o
2 xe contents R(—) 2
Fetch current Y register [E (— YhYI) o
IS ve contents R(—) 2
)
Move address into the E (dhdi ?)
74 SP! Expression Stack Pointer | R{(—) 2 T
P SP:=dh_dl
Move address into the E (dhd—)
£ RP! Return Stack Pointer R(—7) 2 T
RP:=dh_dI
76 X Move address into the X | E (dhdl—)R(—) 2 o
register X:=dh_dl
77 v Move address intothe Y | E (dhdl—)R (—) > o
register Y:=dh_dl
Set Expression Stack E(—)R(—) o
78 xx >SP $xx Pointer SP:=$xx 2
Set return Stack Pointer | E(—)R(—) o
79 xx >RP $xx direct RP:=$xx 2
Set RAM address register| E(—)R (—) L
TAXX X $xx X direct X:=$xx 2
Set RAM address register| E(—)R (—) o
7B Xx >Y B Y direct Y:=$xx 2
7C NOP No operation PC:=PC+1 1 —-————
7D..7F NOP lllegal instruction PC:=PC+1 1 -————
4X XX CALL $xxx Unconditional long CALL E (___) R(—PC+2) 3 -
PC:=$xxx
L If B=1 then PC:=$xxx -—1-
5x xx BRA $xxx Conditional long branch else PC=PC+1 2 —_o-
Push literal/constamt
6n LIT_n onto TOS E(—n)R(—) 1 ————
Conditional short branch | If B=1 then PC:= $xxx -————
80..BF SBRA $xxx in page else PC:=PC+1 2 -———-
Unconditional short E(—)R(—PC+1) o
CO..FF SCALL $xxx CALL PC:= $xxx 2
01/96 23

MARC4 Programmer’s Guide

Instruction Set

TEMIC

TELEFUNKEN Semiconductors

2.2 The gFORTH Language - Quick Reference Guide

2.2.1 Arithmetic/Logical

- EXP (n1ln2 —nl-n2) Subtract the top two nibbles

+ EXP (nln2 —nl+n2) Add up the two top 4-bit values
-C EXP (nl1n2 — nl+/n+/C) 1's compl. subtract with borrow
+C EXP (nl1 n2 —nl+n2+C) Add with carry top two values
1+ EXP (n—n+1) Increment the top value by 1
1- EXP(n—n-1) Decrement the top value by 1
2* EXP (n—n*2) Multiply the top value by 2
2/ EXP(n—nDIV 2) Divide the 4-bit top value by 2
D+ EXP (dl1d2 —d1+d2) Add the top two 8-bit values
D- EXP (dl1d2 —d1-d2) Subtract the top two 8-bit values
D2/ EXP (d—d/2) Divide the top 8-bit value by 2
D2* EXP (d—d*2) Multiply the top 8-bit value by 2
M+ EXP (dln—d2) Add a 4-bit to an 8-bit value
M- EXP (dlin—d2) Subtract 4-bit from an 8-bit value
AND EXP (n1ln2 —nli™n2) Bitwise AND of top two values
OR EXP(n1ln2—nlvn2) Bitwise OR the top two values
ROL EXP (—) Rotate TOS left through carry
ROR EXP (—) Rotate TOS right through carry
SHL EXP (n—n*2) Shift TOS value left into carry
SHR EXP (n—n/2) Shift TOS value right into carry
NEGATE EXP (n—-n) 2's complement the TOS value
DNEGATE EXP (d——-d) 2's complement top 8-bit value
NOT EXP(n—/n) 1's complement of the top value
XOR EXP (n1n2—n3) Bitwise Ex-OR the top 2 values
2.2.2 Comparisons

> EXP (n1n2—) If n1>n2, then branch flag set
< EXP (n1n2—) If n1<n2, then branch flag set
>= EXP (n1n2—) If n1>=n2, then branch flag set
<= EXP (n1n2—) If n1<=n2, then branch flag set
<> EXP(nln2—) If n1<>n2, then branch flag set
= EXP (n1n2—) If n1=n2, then branch flag set
0<> EXP (n—) If n <>0, then branch flag set

= EXP (n—) If n = 0, then branch flag set
D> EXP (d1d2 —) If d1>d2, then branch flag set
D< EXP (d1d2—) If d1<d2, then branch flag set
D>= EXP (d1d2—) If d1>=d2, then branch flag set
D<= EXP (d1d2—) If d1<=d2, then branch flag set

= EXP (d1d2—) If d1=d2, then branch flag set
D<> EXP (d1d2—) If d1<>d2, then branch flag set
DO<> EXP (d—) If d <>0, then branch flag set
DO= EXP (d—) If d =0, then branch flag set
DMAX EXP (dl1 d2 — dMax) 8-bit maximum value of d1, d2
DMIN EXP (d1 d2 — dMin) 8-bit minimum value of d1, d2
MAX EXP (n1 n2 — nMax) 4-bit maximum value of n1, n2
MIN EXP (nl1 n2 — nMin) 4-bit minimum value of n1, n2
24 01/96

TEMIC

TELEFUNKEN Semiconductors

MARC4 Programmer’s Guide
Instruction Set

2.2.3

AGAIN
BEGIN
CASE
DO

ELSE
ENDCASE
ENDOF
EXECUTE
EXIT

IF

LOOP

<n> OF
REPEAT

THEN
UNTIL
WHILE

+LOOP

#DO
#LOOP

?DO
?LEAVE
—?LEAVE

224

0..Fh,
0..15
' <name>

<ROT
>R

?DUP

DEPTH
DROP
DUP

I

J

NIP
OVER
PICK

RFREE
R>
R@

Control Structures

EXP (—)
EXP (—)
EXP (n—n)

EXP (limit start —)
RET (— u]limit|start)

EXP(—)
EXP(n—)
EXP(n—n)

EXP (ROMAddr —)
RET (ROMAddr —)

EXP (—)
EXP (—)
EXP (cn—)
EXP (—)
EXP (—)
EXP (—)
EXP (—)
EXP(n—)

RET (ujlimit|l — ullimit[l+n)
EXP (n—) RET (— ujuln)

EXP(—)
RET (u|u|l—ulu]l-1)
EXP (Limit Start —)
EXP (—)
EXP(—)

Stack Operations

EXP(—n)
EXP(—n)
EXP (— ROMAddr)

EXP (n1ln2n—nnln2)
EXP (n—)RET (—uJuin)

EXP(n—nn)
EXP(—n)
EXP(n—)
EXP(n—nn)

EXP (— 1) RET (uju|l — u]ull)

EXP (—J)

RET (ulu]J uu]l — u]u]J ujull)

EXP (n1ln2—n2)

EXP (n1ln2—nln2nl)

EXP (x—n[x])

EXP(—n)

EXP (— n) RET (ululn —)

EXP (—n)
RET (ujuln — uju|n)

Ends an infinite loop BEGIN .. AGAIN
BEGIN of most control structures
Begin of CASE .. ENDCASE block
Initializes an iterative DO..LOOP

Executed when IF condition is false
End of CASE..ENDCASE block

End of <n> OF .. ENDOF block
Execute word located at ROMAddr
Unstructured EXIT from ‘:’-definition
Conditional IF .. ELSE .. THEN block
Repeat LOOP, if index+1<Ilimit
Execute CASE block, if n =c
Unconditional branch to BEGIN of BEGIN .. WHILE
REPEAT

Closes an IF statement

Branch to BEGIN, if condition is false
Execute WHILE .. REPEAT block,

if condition is true

Repeat LOOP, if I+n < limit

Execute the #DO .. #LOOP block n-times
Decrement loop index by 1 downto zero

if start=limit, skip LOOP block
Exit any loop, if condition is true
Exit any loop, if condition is false

Push 4-bit literal on EXP stack

Places ROM address

of colon-definition <name> on EXP stack

Move top value to 3rd stack pos.

Move top value onto the Return Stack
Duplicate top value, if n <>0

Get current Expression Stack depth

Remove the top 4-bit value

Duplicate the top 4-bit value

Copy loop index | from Return to Expression Stack
Fetch index value of outer loop

[2nd Return Stack level

entry]

Drop second to top 4-bit value

Copy 2nd over top 4-bit value

Copy the x-th value from the Expression Stack
onto TOS

Get # of unused RET stack entries

Move top 4-bits from return to Expression Stack
Copy top 4-bits from return to Expression Stack

01/96

25

MARC4 Programmer’s Guide
Instruction Set

TEMIC

TELEFUNKEN Semiconductors

ROLL EXP (n—) Move n-th value within stack to top
ROT EXP (n1n2n—n2nnl) Move 3rd stack value to top pos.
SWAP EXP (n1ln2—n2nl) Exchange top two values on stack
TUCK EXP (n1n2—n2nln2) Duplicate top value, move under second item
2>R EXP (nln2—) Move top two values from Expression
to Return Stack
RET (— u|n2|nl)
2DROP EXP (nln2—) Drop top 2 values from the stack
2DUP EXP(d—dd) Duplicate top 8-bit value
2NIP EXP (d1d2—d2) Drop 2nd 8-bit value from stack
20VER EXP (d1d2—dl1d2d1l) Copy 2nd 8-bit value over top value
2<ROT EXP (d1d2d—ddld2) Move top 8-bit value to 3rd pos’n
2R> EXP (—nl1n2) Move top 8-bits from Return to Expression Stack
RET (u|n2|nl —)
2R@ EXP(—nln2) Copy top 8-hits from return to Expression Stack
RET (u|n2|n1 — u|n2|nl)
2ROT EXP (d1d2d—d2ddl) Move 3rd 8-bit value to top value
2SWAP EXP (d1d2—d2d1) Exchange top two 8-bit values
2TUCK EXP (dl1d2—d2d1d2) Tuck top 8-bits under 2nd byte
3>R EXP (n1n2n3—) Move top 3 nibbles from the Expression onto
RET (— n3|n2|nl) the Return Stack
3DROP EXP (n1n2n3—) Remove top 3 nibbles from stack
3DUP EXP (t—1tt) Duplicate top 12-bit value
3R> EXP (—nl1n2n3) Move top 3 nibbles from Return
to the Expression Stack
RET (n3|n2|n1 —)
3R@ EXP (—n1n2n3) Copy 3 nibbles (1 entry) from the Return
RET (n3|n2|n1 — n3|n2|nl) to the Expression Stack
2.2.5 Memory Operations
! EXP (naddr—) Store a 4-bit value in RAM
@ EXP (addr—n) Fetch a 4-bit value from RAM
+! EXP (naddr—) Add 4-bit value to RAM contents
1+! EXP (addr—) Increment a 4-bit value in RAM
1-! EXP (addr —) Decrement a 4-bit value in RAM
2! EXP (daddr—) Store an 8-bit value in RAM
2@ EXP (addr—d) Fetch an 8-bit value from RAM
D+! EXP (daddr—) Add 8-bit value to byte in RAM
D-! EXP (daddr—) Subtract 8-bit value from a byte in RAM
DTABLE@ EXP (ROMAddrn —d) Indexed fetch of a ROM constant
DTOGGLE EXP (daddr—) Exclusive-OR 8-bit value with byte in RAM
ERASE EXP (addrn—) Sets n memory cells to 0
FILL EXP (addrnnl —) Fill n memory cells with n1
MOVE EXP (nfromto—) Move a n-digit array in memory
ROMByte@ EXP (ROMAddr—d) Fetch an 8-bit ROM constant
TOGGLE EXP (naddr—) Ex-OR value at address with n
3! EXP (nh nm nl addr —) Store 12-bit value into a RAM array
3@ EXP (addr —nh nmnl) Fetch 12-bit value from RAM
T+! EXP (nh nm nl addr —) Add 12-bits to 3 RAM cells
T-! EXP (nh nm nl addr —) Subtract 12-bits from 3 nibble RAM array
TD+! EXP (daddr—) Add byte to a 3 nibble RAM array
TD-! EXP (daddr—) Subtract byte from 3 nibble array
26 01/96

TEMIC

TELEFUNKEN Semiconductors

MARC4 Programmer’s Guide
Instruction Set

2.2.6

(cceeccc)
\ ccceecce
: <name>

[FIRST]
[LAST]
CODE
END-CODE
ARRAY
2ARRAY
CONSTANT
2CONSTANT
LARRAY

2LARRAY
Index
ROMCONST
VARIABLE
2VARIABLE
<n> ALLOT

AT <address>
S INTX

: $AutoSleep
:$RESET

2.2.7

ADD
ADDC
CCR!
CCR@
CMP_EQ
CMP_GE
CMP_GT
CMP_LE
CMP_LT
CMP_NE
CLR_BCF
SET_BCF
TOG_BF
DAA
DAS
DEC
DECR

D
DROPR
EXIT

E

IN

INC
NOP

Predefined Structures

RET (—)
RET (ROMAddr —)
EXP (—0)
EXP (—n|d)
EXP(—)
EXP(—)
EXP(n—)
EXP (n—)
EXP(n—)
EXP (d—)
EXP (d—)

EXP (d—)

EXP (n|d addr—addr’)
EXP (—)

EXP (—)

EXP (—)

RET (— ROMAddr)

EXP (—)

Assembler Mnemonics

EXP (nl1n2 —nl+n2)
EXP (nl1 n2 —nl+n2+C)
EXP (n—)

EXP(—n)

EXP (n1n2—nl)

EXP (n1n2—nl)

EXP (n1ln2—nl)

EXP (n1n2—nl)
EXP(nln2—nl)

EXP (n1n2—nl)

EXP (—)
EXP (—)
EXP (—)

EXP (n>9 or C set — n+6)
EXP (n— 10+/n+C)
EXP (n—n-1)

RET (u|u]l — u]u]l-1)
EXP(—)

RET (ujuju—)

RET (ROMAddr —)
EXP(—)

EXP (port — data)
EXP (n—n+1)

EXP (—)

In-line comment definition

Comment until end of the line

Begin of a colon definition

Exit; ends any colon definition

Index (=0) for first array element

Index for last array element

Begins an in-line macro definition

Ends an In-line macro definition

Allocates space for a 4-bit array

Allocates space for an 8-bit array

Defines a 4-bit constant

Defines an 8-bit constant

Allocates space for a long 4-bit array

with up to 255 elements

Allocates space for a long byte array
Run-time array access using a variable array index
Define ROM look-up table with 8-bit values
Allocates memory for 4-bit value

Creates an 8-bit variable

Allocate space for <n+1> nibbles

of un-initialized RAM

Fixed <address> placement

Interrupt service routine entry

Entry point address on Return Stack underflow
Entry point on power-on reset

Add the top two 4-bit values
Add with carry top two values
Write top value into the CCR
Fetch the CCR onto top of stack
If n1=n2, then Branch flag set

If n1>=n2, then Branch flag set
If n1>n2, then Branch flag set

If n1<=n2, then Branch flag set
If n1<n2, then Branch flag set

If n1<>n2, then Branch flag set
Clear Branch and Carry flag

Set Branch and Carry flag
Toggle the Branch flag

BCD arithmetic adjust [addition]
9's complement for BCD subtract
Decrement top value by 1
Decrement value on the Return Stack
Disable interrupts

Drop element from Return Stack
Exit from current ’-definition
Enable interrupts

Read data from an 1/O port
Increment the top value by 1

No operation

01/96

27

MARC4 Programmer’s Guide
Instruction Set

TEMIC

TELEFUNKEN Semiconductors

NOT EXP (n—/n) 1's complement of the top value
RP! EXP (d—) Store as Return Stack Pointer
RP@ EXP (—d) Fetch current Return Stack Pointer
RTI RET (RETAddr —) Return from interrupt routine
SLEEP EXP(—) Enter 'sleep-mode’, enable all interrupts
SWIO0 SWI7 EXP (—) Software triggered interrupt
SP! EXP (d—) Store as Stack Pointer
SP@ EXP (—d) Fetch current Stack Pointer
SUB EXP (nl1n2 —nl-n2) 2's complement subtraction
SUBB EXP (n1 n2 — nl+/n2+C) 1's compl. subtract with Borrow
TABLE EXP (—d)

RET (RetAddr RomAddr —) Fetches an 8-bit constant from an address in ROM
ouT EXP (data port —) Write data to I/O port
X@ EXP (—d) Fetch currenk register contents
X|@ EXP (—n) Indirectx fetch of RAM contents
[+X]@ EXP(—n) Pre-incr.x indirect RAM fetch
X-]@ EXP(—n) Postdecrx indirect RAM fetch
[>X]@ $xx EXP(—n) Direct RAM fetch,x addressed
XI! EXP(d—) Move 8-bit address t® register
X]! EXP (n—) Indirectx store of RAM contents
[+X]! EXP(n—) Pre-incr.x indirect RAM store
[X-]! EXP (n—) Postdecrx indirect RAM store
[>X]! $xx EXP(n—) Direct RAM store x addressed
Y@ EXP (—d) Fetch current Y register contents
Y@ EXP(—n) Indirect Y fetch of RAM contents
[tY]@ EXP (—n) Pre-incr. Y indirect RAM fetch
[Y-l@ EXP(—n) Postdecr. Y indirect RAM fetch
[>Y]@ $xx EXP(—n) Direct RAM fetch, Y addressed
Y! EXP (d—) Move address to Y register
[Y]! EXP(n—) Indirect Y store of RAM contents
[+Y]! EXP(n—) Pre-incr. Y indirect RAM store
[y-]! EXP (n—) Postdecr. Y indirect RAM store
[>Y]! $xx EXP (n—) Direct RAM store, Y addressed
>RP $xx EXP (—) Set Return Stack Pointer
>SP $xx EXP(—) Set Expression Stack Pointer
>X $xx EXP(—) Setx register immediate
>Y $xx EXP(—) Set Y register immediate
28 01/96

|. Hardware Description

ll. Instruction Set

lll. Programming in gFORTH

V. gFORTH Language Dictionary

Addresses

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors Programming in gFORTH

3 Programming in gqFORTH

3.1 Why Program in gFORTH ? amount of programming effort that you will

]) require. Programming in qFORTH results in
Programming in gFORTH reduces the reysable code. Re-usable for other applications
software development time ! that you will program at a later date. This is an
TEMIC's strategy in developing an integratedmportant factor in ensuring that your future
programming environment for gFORTH was ts¢oftware developement costs are kept
free the programmer from restrictions imposeganagable. Routines written by one gFORTH
by many FORTH environments (e.g. screeprogrammer can be easily incorporated by a
fixed file block sizes), and at the same time tdifferent gFORTH user.
maintain an interactive approach to program
development. Using the MARC4 softwarq_anguage Features:
development system enables the MARC4
programmer to edit, compile, simulate and/or
evaluate program code using an integratdckpandability

package with predefined key codes and Many of the fundamental qFORTH
pull-down menus. The compiler generated operations are directly implemented
MARC4 code is optimized for demanding in the MARC4 instruction set.
application requirement, such as efficient usaggack Oriented

of available program memory. One can be All operations communicate with one
assured that the generated code only uses the another via the data stack and use the
amount of on-chip memory that is required, and reverse polish form of notation (RPN)

that no additional overhead is attached to ﬂgatructured Programming
program at the compilation phase. qFORTH SUpPOTts structured

What other reasons are there for programming
programming in qFORTH ?

Subroutines that are kept short, increase thgentrant

mOdUlarity and program malntalnablllty Both Different service routines can share
are related to development cost. Programs that the same code, as |0ng as you do not
are developed using the Brute Force approach modify global variables within this
(where the program is realized in software using code.

sequential code) tend to be considerably larger in
memory consumption, and are extremelﬁ :
ecursive

difficult to maintain. gFORTH routines can call

gFORTH programs, engineered using the themselves.
building block modular approach are compactin

size, easy to understand and thus, easier
maintain. The added benefit for the user is
library of software routines which can be
interchanged with other MARC4 applications so
long as the input and output conditions of your
code block correspond. This toolbox of
off-the-shelf gFORTH routines grows with each
new MARC4 application and reduces the

0,. :
I}jatlve Code Inclusion
In gFORTH there is no separation of
high level constructs from the native
code mnemonics.

01/96 31

MARC4 Programmer’s Guide TEMIC
Programming in gFORTH TELEFUNKEN Semiconductors

3.2 Language Overview efficient real time control. Since the gFORTH
compiler generates highly optimized code, there
is no advantage or point in programming the

gFORTH is based upon the FORTH-83 languad®ARC4 in assembly code. The high level of

standard, theqFORTH compiler generates code efficiency generated by the gFORTH
native code for a 4-bit FORTH-architecturecompiler is achieved by the use of modern
single chip microcomputer, the TEMICoptimization techniques such as

MARCA4. branch-instruction size minimization, fast

MARC4 applications are all programmed irpro_ce_dur_e calls, pointer tracking and peephole
gqFORTH which is designed specifically for OPtimizations.

APPLICATION
SPECIFICATION

HARDWARE PROGRAM
SPECIFICATION LEARN qFORTH

REQUIREMENTS
v— —— —— A LEARN DEVELOPMENT
SYSTEM
PSEUDO-CODE rd
MODULES

4 PROGRAMMERS GUIDE
CODE IN MARC4 I MARC4
qFORTH —

v

EDIT PROGRAM
(MODULES)
<-| COMPILE I‘—
(TEST MODULES)
SIMULATE

DEVELOPMENT SYSTEM
USER'’S GUIDE

v

1—' EMULATE <

v

MAIL FLOPPY
TO TEMIC

MARC4 TARGET
HARDWARE

Figure 1. Program development with gFORTH

32 01/96

TEMIC

TELEFUNKEN Semiconductors

MARC4 Programmer’s Guide
Programming in gFORTH

Standard FORTH operations which suppoithe following two tables highlight the basic

string processing, formatting and disk I/O haveonstructs and compargFORTH with the

been omitted from the qFORTH system libra
since these instructions are not required
single-chip microcomputer applications.

Table 1. gFORTH’s FORTH-83 language subset

nEFORTH-83 language standard.
in

Arithmetic / Logical

Stack Operations

— D+ 1+ AND NEGATE + D- 1- NOT
DNEGATE * 2* D2* OR / 2/ D2/ XOR

>R <ROT ?DUP OVER 2DUP | R> 2DROP
DEPTH DUP PICK 20VER DROP SWAP
2SWAP J ROT ROLL

Compiler

Control Structure

ALLOT $INCLUDE CONSTANT
2CONSTANT CODE END-CODE
VARIABLE 2VARIABLE

?DO DO IS ELSE THEN +LOOP LEAVE
UNTIL AGAIN ENDCASE LOOP WHILE
BEGIN ENDOF OF CASE EXIT REPEAT
EXECUTE

Comparison

Memory Operations

<=<><=>=0=0<> D> D0<> D< D0O= D>=
D= MIN MAX DMIN DMAX D<= D<>

12! @ 2@ ERASE MOVE MOVE > FILL
TOGGLE

Table 2. Differences between qFORTH and FORTH-83

gFORTH

FORTH-83

4-bit Expression Stack

12-bit Return Stack

The prefix “2” on a keyword

(e.g. 2DUP refers to an 8-bit data type)
Branch and Carry flag in the Condition Cod¢
Register

Only predefined data types for handling
untyped memory blocks, arrays or tables of
constants

16-bit Expression Stack
16-bit Return Stack

The prefix “2” on a keyword
(e.g. 2DUP refers to a 32-bit data type)

=Flag value on top of the Expression Stack
CREATE, >BUILD .. DOES

01/96

33

MARC4 Programmer’s Guide TE MIC

Programming in gFORTH TELEFUNKEN Semiconductors
3.3 The gFORTH Vocabulary: The colon !” and the semicolor* are the start
Words and Definitions and stop declarations for the definition.

gFORTH programmers refer to a colon
gFORTH is a compiled language with alefinition to specify a word name which follows
dictionary of predefined words. Each gFORTHhe colon. The following diagram depicts the
word contained in the system library has, as iexecution sequence of these three words:

basis a set of core words which are very close{gs goqential order shows the way the compiler

the machine level instructions of the MARC .
and the MARC4) will understand what our
(such aXOR, SWAP, DROP andROT). Other AE)rogram is to do.)

instructions (such a3+ andD+!) are gFORTH , _ .

word definitions. The gFORTH compiler parsedst step Begin the word definition with a,
the source code for words which have been followed by a space.

defined in the system dictionary. Once located @a1d step Specify the <name> of the colon
being in the dictionary, the compiler then definition.

translates the gFORTH definition into MARC43, 4 step List the names of the sequentially

machine level instr_uc.:t.ions. organized words which will perform
3.3.1 Word Definitions the definition. Remember that each

A new word definition which i.e. contains three word as shown above can itself be a
sub-words: WORD1, WORD2 and WORD3 in colon or macro definition of other
a colon definition called MASTER-WORD s gE?JETH words (such aD+ or
written in gFORTH as:)-

- MASTER-WORD WORD1 WORD2 WORD3 : 4th step Specify the end of the colon definition
with a semicolon.

: MASTER_WORD Z
| 2
-| WORD1 WORD2 WORD:I

L=

Figure 2. Threaded gFORTH word definition

3.4 Stacks, RPN and Comments Example:

4+2 Is spoken in the English language as '4
plus 2’, resulting in the value 6. In our
stack basedMARC4 we write this
using gFORTH notation as:

42+ The first numberd must be placed
onto the data stack, then the second
number will follow it onto the data

In this section we will look at the gFORTH
notation known as€RPN. Other topics to be
examined include a look at gFORTH’s stacks,
constants and variables.

34.1 Reverse Polish Notation

qFORTH is éReversePolish Notation language stack. The MARC4 then comes to the
(RPN), it operates on a stack of data valiRN addition operator. Both theand2 are

is a stack based representation of a mathematical taken off the data stack and processed
problem where the top two numbers on the stack by the MARC4'’s arithmetic and logic
are operated upon by the operation to be unit, the result (in this case 6) will be
performed.

34 01/96

TEMIC

TELEFUNKEN Semiconductors

MARC4 Programmer’s Guide
Programming in gFORTH

deposited onto the top of the data&alled word, program control is transferred back
stack. to the calling qFORTH word. The Return Stack
The gFORTH Stacks is used by all colon definitions (i.e. CALLS),

34.2
_ interrupts and to hold loop control variables.
The MARC4 processor is a stack based

microcomputer. It uses a hardware constructed _
storage area onto which data is placed in 343 Stack Notation

last-in-first-out nature. The qFORTH stack notation shows the stack
The MARC4 has two stacks, the Expressiopontents before and after the execution of a
Stack and the Return Stack. gFORTH word. The separation of the before and

The Expression Stack also known as the datathe after operations is via two bars:.Fhe left

stack. is 4-bit wide and is used for temporagzgd side of the stack shows the stack before

storage during calculations or to pass parameté&€cution of the operation. The right most
to wo%ds. g P P element before the two bars on the left side is the

) o _ top of stack before the operation and the right
TheReturn Stackis 12-bit wide and is used by st on the right side is also the top of stack after

the processor to hold the return addresses 1 gperation. Examine the following gFORTH
subroutines, so that upon completion of thgack notation:

Before Side After Side Example Stack Notation
(n3n2nl — n3n2nl) 4 2 1 (— 4 2 1)
1 1 + (4 21 — 4 3)
TOS TOS SWAP (4 3 — 3 4)
3.4.4 Comments beginning of the commenilype 1

declarations do not require a blank
space before the closing bracket.

Comments start at the second space
following the backslash and go till the
end of the line. Both types of
declarations require that a blank space
follows the comment declaration.

Comments in qFORTH are definitions which
instruct the gFORTH compiler to ignore the text
following the comment character. The commentyP€_2
is included in the source code of your program to

aid the programmer in understanding what the
code does. There are two types of comment
declarations:

qFORTH Comment Definitions Valid Invalid
Type 1: (text) (this is a valid (this is not a valid
— comment) comment)
Type _2: \ text — - — .
\ thisis a valid \\ this is not a valid
comment comment

Type_1 Comments begin and end with curved
brackets, while Type_2 comments
require only a backslash at the

01/96

MARC4 Programmer’s Guide TEMIC
Programming in gFORTH TELEFUNKEN Semiconductors

3.5 Constants and Variables $SEXTMEMSIZE

ows the programmer to define the size of an
ternal memory. Only required, if an external

emory is used whereby the default value is set
to 255 nibbles.

In gFORTH data is normally manipulated aé‘"
unsigned integer values, either as memo
addresses or as data values.

351 Constants $SEXTMEMPORT

A constant is an un-alterable qFORTH’-\IIOWS the definition of a port address via which
definition. When it's once defined, the value of€ €xtérnal memory is accessed. The default

the constant cannot be altered. In gFORTH 4-fPrt address for external memoryHs.
and 8-bit numerical data can be assigned t0$%XTMEMTYPE

more readable symbolic representation.
Allows the definition of the type of external
memory used. The typ&AM orEEPROM are

qFORTH Constant Definitions valid, wherebyRAM is default if an external

value CONSTANT (4-bit constant] Memory is used.

<constant—name>

value 2CONSTANT (8-bit constant Example:
RAM CONSTANT $EXTMEMTYPE
95 2CONSTANT $EXTMEMSIZE

. 16 2ARRAY Freq EXTERNAL

Example: : Check_Freq Freq[4] 2@ 80h D>

7 CONSTANT Set-Mode IF 00 Frequency [5] 2!

42h 2CONSTANT ROM_Okay THEN

: Load-Answer ROM_Okay; (Places 42h

on EXP stack) 3.5.2 Look-up Tables

Look-up tables of 8-bit bytes are defined by the
Predefined Constants word ROMCONST followed by the
<table-name> and a list of single or
In the gFORTH compiler a number of constanigouble-length constants each delimited by a
have a predefined function. space and a comma.

$ROMSIZE The contents of a table is not limited to literals

2>CONSTANT to define the MARCA's actual such as 5 or 67h, but may also include user or
ROM size. The values ale5K (default),2.0K, predefined constants such &et-Mode or

2 5K, 3.0K and4.0Kbytes of ROM. ROM_Okay.
In the examples below the days of the month are
$RAMSIZE placed into a look-up table called

2CONSTANT to define the MARC4's actual D2ys_Of_Month’, the month (converted 00 ...
RAM size in nibbles. Possible values drkl 11) is used to access the table in order to return

(default), 167 and255 nibbles. the BCD number of days in the given month.

36 01/96

TEMIC

TELEFUNKEN Semiconductors

MARC4 Programmer’s Guide
Programming in gFORTH

gFORTH Table Definition

ROMCONST<table-name>

Const, Const, Const

Const, Const, Const

Examples:
ROMCONST DaysOfMonth 31h, 28h, 31h, 30h,

31h, 30h , 31h, 31h,
30h, 31h, 30h, 31h,

ROMCONST DaysOfWeek su, MO, TU, WE,

ROMCONST Message

Note 1:A comma must follow the last table item.A

TH, FR, SA,
11, “ Hello World ",

Example:

VARIABLE Relay#
2VARIABLEVoltage

3.6.1

gFORTH arrays are declared differently from
arrays in FORTH-83. In both implementations of
FORTH an array is a collection of elements
assigned to a common name. An array can either
be defined as being ¥ARIABLE with 8
elements as:

VARIABLE DATA 7 ALLOT
or using the gFORTH array implementation:

8 ARRAY DATA
The array index is running from 0 to <length-1>.
RRAY and2ARRAY may contain up to 16

Defining Arrays

Note 2:Since there is no end-of-table delimiteelements (e.g. nibbles or bytespRRAY and

3.6

in gFORTH, only a colon definition, a
VARIABLE or anotherROMCONST

2LARRAY contain more than 16 elements.

may follow a table definition (i.e. the last
comma).

Variables and Arrays

A variable is a gFORTH word whose name i

associated with a memory address. A value ¢

be stored at the memory address by assignin
value to the named variable. The value at th
address can be accessed by using the varig
name, thereby placing the variable value onto t
top of the stack.

The VARIABLE definition has a 4-bit memory

cell allocated to it. gFORTH permits a3:

gFORTH Array Definitions
ARRAY allocates RAM space for a
short 4-bit array
LARRAY allocates RAM space for a
il long 4-bit array
y @2ARRAY allocates space for a short
is 8-bit array
b8 ARRAY | allocates space for a long
he 8-bit array

7 Stack Allocation

double-length 8-bit value also to be assigned 8%, the E : R ‘
a 2VARIABLE. B%th the Expression and Return Stacks are

gFORTH Variable Definitions

VARIABLE <variable— 4-bit variable
name>
2VARIABLE <variable— | 8-bit variable
name>

located in RAM. The size of the stacks are
variable and must be defined by the programmer
by using the predefined variable® andSQ. In
figure 3 the location of the stacks in RAM is
shown. The Return Stack variable addie8s
starts at RAM location 00h. The Expression
Stack is located above the Return Stack starting
at the next location callesO.

01/96

37

MARC4 Programmer’s Guide

Programming in gFORTH

TEMIC

TELEFUNKEN Semiconductors

The depth of the Expression and Return Stacks nibbles
are allocated using t#e LOT construct. While :$RESET

the depth (in nibbles) of the Expression Stack is
exactly the number allocated, the Return Stack .qp gg
depth is expressed by the following formula:

RET_Value := (RET_Depth-2)*4+1

Example:

VARIABLE RO 20 ALLOT \ RET Depth of 7
VARIABLE SO 17 ALLOT \ EXP Depth of 17

3.7.1 Stack Pointer Initialisation

sp 15h

o

[

e
>
<

w

Global variables

v

(TOS-1)

RP 0Ch
08h

04h

00h

FCh

and arrays

SO

RO

0

0

0

Auto-Sleep

unused used unused
Expression

Return Stack

used

Figure 3. Stacks inside RAM

The two stack pointers must be initialized in the
$RESET routine.

Note: Return stack pointer RP must be set to
FCh so that the AUTOSLEEP feature
will work.

Example:

VARIABLE RO 32 ALLOT
VARIABLE SO 12 ALLOT

\ RET stack depth = 10
\ EXP stack depth =12

Stack

>RP FCh \ Initialize the two stack
pointers

RAM_Test

3.8 Stack Operations, Reading and
Writing
3.8.1 Stack Operations

A number of stack operators are available to the
gFORTH programmer. An overview of all the
predefined stack words can be found in the
gFORTH Quick Reference Guide The most
often used stack operators which manipulate the
order of the elements on the data stackikH,
DROP, SWAP, OVER andROT are explained
later on.

The Data Stack

The 4-bit wide Data Stack is called the
Expression Stack. Arithmetic and data
manipulation are performed on the Expression
Stack. The Expression Stack serves as a holding
device for the data and also as the interface link
between words, in that all data passed between
the gFORTH words can be located on the
Expression Stack or in global variables.

The gFORTH word
"TEN1234567890;

- 0 _____ TOs

9 TOS-1

8

7

6

5

4

3

2 v

1 TOS-9

Figure 4. Push down data stack

38

01/96

TEMIC MARC4 Programmer’s Guide

TELEFUNKEN Semiconductors Programming in gFORTH
When executed, will have the valOeat the top ROT and <ROT
and the valud at the bottom of the Expressio

Stack. nSta_ck values must frequently be arranged into a
defined order. We have already been introduced
SWAP to the SWAP operation. BesidesSWAP,
In many programming applications it isdFORTH supports the stack rotation operators
necessary to re-arrange the input data so thaRfPT and<ROT.
can be handled properly. For example we wiffhe ROT operation moves the third value
use a simple series of data and tB#WAPthem (TOS-2) to the TOS. The operatiorROT

so that they appear in the reserve order. (which is the same aBOT ROT) does the

4 2 SWAP (42—24) opposite ofROT, moving the value from the
TOS to the TOS-2 location on the Expression
Stack.

-2 ><_ 4 TOS
4 2 | TOS-1

R>, >R, R@ and DROPR

gFORTH also supports data transfers between
the Expression and the Return Stack.

The>R operation moves the top 4-bit value from

the Expression Stack and pushes the value onto

the Return StaclkR> removes the top 4-bit value

from the Return Stack and puts the value onto the

Expression Stack, whilR@ (or |) copies the

4-bit value from the Return Stack and deposits
DUP. OVER and DROP the copied value onto the Expression Stack.

’ DROPR removes the top entry from the Return
Stack.
The gFORTH word to duplicate the TOS item is
DUP. It will make a copy of the current TOS

TOS-9

Expression stack Expression stack

Figure 5. The SWAP operation

element on the Expression Stack. < R> R@, |
DUP is useful in retaining the TOS value before o>~ -2 > 0 —
operations which implicityDROP the TOS 8 >R, #DO
following their execution. For example, all of the Z
comparison operations like, >=, <= or < 5
destroy the TOS. g
The OVER operation makes a copy of the 2
second element on the stack (TOS-1) andS® =
deposits it onto the top of the stack. ,
Expression stack Return stack

The MARCA4 stack operatROP removes one
4-bit value from the TOS. For example, the
gFORTH operatiorNIP will drop the TOS-1
element from the stack. This can be written in
gFORTH as:

:NIP SWAP DROP; (nln2—n2)

Figure 6. Return Stack data transfers

01/96 39

MARC4 Programmer’s Guide TEMIC
Programming in gFORTH TELEFUNKEN Semiconductors

Other Useful Stack Operations operation there is almost always an 8-bit

equivalent. A full list of all stack operations may

The fo_IIowing list contains more usefl_JI stack o tound in theqFORTH Quick Reference
operations. Note that for every 4-bit stac Lide

' <name> EXP (— ROMAddr) Places ROM address of colon-definition
<name> on EXP stack

<ROT EXP(nln2n—nnln2) Move top value to 3rd stack pos.

?DUP EXP(n—nn) Duplicate top value, if n <>0

I EXP(—1) Copy 4-bit loop index from the return to the

Expressonrstaac'

R@ RET (ulu]l — u]ull)

NIP EXP (n1ln2—n2) Drop second to top 4-bit value

TUCK EXP (nln2—n2nln2) Duplicate top value, move under second item

2>R EXP (n1ln2—) Move top two values from Expression to Return
RET (— u|n2|nl) Stack

2DROP EXP (n1ln2—) Drop top 2 values from the stack

2DUP EXP(d—dd) Duplicate top 8-bit value

2NIP EXP (d1d2—d2) Drop 2nd 8-bit value from stack

20VER EXP (dl1d2—dl1d2dl) Copy 2nd 8-bit value over top value

2<ROT EXP(dl1d2d—ddl1d2) Move top 8-bit value to 3rd pos’n

2R> EXP (—nln2) Move top 8-bits from Return to Expression
RET (u|n2|n1 —) Stack

2R@ EXP(—nln2) Copy top 8-bits from Return to Expression Stack
RET (u|n2|n1 — u|n2|nl)

3>R EXP (n1n2n3—) Move top 3 nibbles from the Expression onto the
RET (— n3|n2|nl) Return Stack

3DROP EXP (n1n2n3—) Remove top 12-bit value from stack

3DUP EXP(t—tt) Duplicate top 12-bit value

3R> EXP (—nln2n3) Move top 3 nibbles from Return to the
RET (n3|n2|n1 —) Expression Stack

3R@ EXP(—nln2n3) Copy 3 nibbles (1 ROM address entry) from the

RET (n3|n2|n1 — n3|n2|n1 Return Stack to the Expression Stack

40 01/96

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors Programming in gFORTH

3.8.2 Reading and Writing (@, !) 3.8.3 Low Level Memory Operations

In the previous section we mentioned that data ~RAM Address Registers X and Y

can be_ placed konto and taken off of th%he MARC4 processor can address any location
Expression Stack. in RAM indirectly via the 8-bit wideX and Y
The reading and writing operations transfer dafRRAM Address Registers. These registers are
values between the data stack and the RAMsed as pointer registers to organise arrays
Writing a data value to a RAM location whichwithin the RAM, under CPU control they can be
has been specified by a variable name requirgge-incremented or post-decremented.

that the TOS contains the variable’s 8-bit RA . .
address and that the data to be stored in the RM_ € é(o?;]SiIeredgdfitr? grs faertir? g)o n;ﬁgczl[lgrgs'(gd by

be contained at the TOS-2 location. operations. Hence, care should be taken when

Read is written in the gFORTH syntax with theeferencing these registers explicitly. By default
@ symbol and is pronounced Fetch. The writghe compiler uses the Y register.

operator is written in gFORTH with theymbol
and is pronouncefitore

. o Memor rators which h
Write two qFORTH colon definitions (words) emory O;?\?tlgesg\gté? Use the
that will store the numeric value 7 from the TO
to the variable named FRED and then fetch the® D+! 2! ERASE
contents of it back onto the Expression Sta¢k T
(TOS). 1 D-! 20 FILL

+! TD+! 3! MOVE
Example:
1+! TD-! 3@ MOVE>

VARIABLE FRED
: Store 7 FRED ! ; (—) —I T+! PICK TOGGLE
- Fetch FRED @ ; (—n)

—I |
For 8-bit values, stored at two consecutive1 i U ROLL DTOGGLE

locations, qFORTH has the Double-Fetch and
Double-Store word2@and?2!. To store 1Ahin
the 8-bit 2VARIABLE BERT using the Example:

Double-Store, examine the following code: The 4-bit value in TOS is added to an 8-bit RAM

2VARIABLE BERT value and stored back into the 8-bit RAM
: Double-Store 1Ah BERT 2! : variable.
Storing the value 1Ah is a two part operation:M+! (n RAM_addr —)

The high order nibble 1is stored in the first digit, X! [+X]@ + [X-]!
while at the next 4-bit RAM location the 0 [XJ@ +C [X]
hexadecimal value A will be stored. ’

: Double-Fetch BERT 2@ ; (—d) 2VARIABLE Voltage

i.e. accesses the 8-bits at the memory addresg® Voltage M+
where BERT is placed and load them onto

Expression Stack. The lower order nibble will

always end up on TOS.

Note: Hexadecimal values are represented
usingh or H following the value.

01/96 41

MARC4 Programmer’s Guide TE MIC

Programming in gFORTH TELEFUNKEN Semiconductors
X Register Description Y Register
X@ Fetch current X (or Y) register contents Y@

X! Move 8-bit address from stack into X (or Y) reg. Y!
>X XX Set register address of X (or Y) direct >Y yy
[>X]@ xx Direct RAM fetch, X (or Y) addressed [>Y]@ yy
[>X]! xx Direct RAL store, X (or Y) addressed >Y]'yy
X]@ Indirect X (or Y) fetch of RAM contents [Y|@
[X]! Indirect X (or Y) store of RAM contents [Y]!
[+X]@ Pre-increment X (or Y) indirect RAM fetch [+Y]@
[X-]@ Postdecrement X (or Y) indirect RAM fetch [Y-]@
[+X]! Pre-increment X (or Y) indirect RAM store [+Y]!
[X-]! Postdecrement X (or Y) indirect RAM store [Y-]!
Bit Manipulations in RAM 3.9 MARC4 Condition Codes

Using the X or Y registers it is possible torhe MARC4 processor has within Asithmetic
manipulate the contents of the RAM on a bitwisg ogic Unit (ALU) a 4-bit wideConditionCode
basis. The following examples have all the sanfegister (CCR) which contains 4 flag bits. These

stack notation. are the Branc(B) flag, the Interrupt-Enablg)
: BitSet (mask RAM_addr — [branch flag]) flag and the CarryC) flag.
X! [X]|@ (get data from memory)
OR [X]! (mask & store in memory) ' ' '
: C - B |
: BitReset (mask RAM_addr — [branch flag]) ' ' ' CCR
X!
Fh XOR (Invert mask for AND) Interrupt enable
Xl@ (get data from memory) Branch
AND [X]! (mask & store in memory) (reserved)
' Test0= (mask RAM_addr — [branch flag]) Carry
X! [X]@ Figure 7. MARC4 Condition Code Register flags

AND DROP
' For example most arithmetic/logical operations
CODE Testo<> (mask RAM_addr — Ec?arg]”)Ch will have an effect on it. If you try to ad® and
Test0= TOG_BF 5, _the Ca_trry and Branch flags will be set, since an
END-CODE arithmetic overflow has occured.

42 01/96

TEMIC MARC4 Programmer’s Guide

TELEFUNKEN Semiconductors Programming in gFORTH
3.9.1 The CCR and the Control Single and Double Length Operators
Operations

Examples have already been presented which
The Carry flag is set by ALU instructions such agerform operations on the TOS as a 4-bit
the +, +C, -or -C whenever an arithmetic (single-length) value or on both the TOS and

under/overflow occurs. The Carry flag also i§0OS-1 values. By combining the TOS and

used during shift/rotate instruction suchiRBR TOS-1 locations it is possible to handle the data
andROL. as an 8-bit value.

The Branch flag is set under CPU contraNote: In qFORTH all operators which start with
depending upon the current ALU instruction and a 2 (e.g: 2SWAP or 2@) use double

is a result of the logical combination of the carry length (8-bit) data. Other operators such
flag and the TOS=0 condition. as D+ and D= are also double length
The Branch flag is responsible for generating operators.

conditional branches. The conditional branch is

performed when the Branch flag was set by orithe qFORTH language also permits triple length
of the previous qFORTH operations (e.goperators, these are defined witB jrefix (e.g:
comparison operations). 3DROP). Examples for all gFORTH dictionary
TheTOG_BF instruction will toggle the state of Words are included in thgFORTH Language
the Branch flag in the CCR. If the Brarithg is Reference Dictionary

set before th& OG_BF instruction, then it will

be reset following the execution. 3.10.2 Addition and Subtraction

The SET_BCF instruction will set the Branch
and Carry upon execution, while tBeR_BCF
operation will reset both flags.

The algebraic expressi@gn+ 2is spoken in the
English language a plus 2 and results in a
value of 6. In qFORTH we write this expression
as4 2 + The4 is deposited onto the Data Stack,
3.10 Arithmetic Operations followed by the 2The operator says to take the

. . . top two values from the Data Stack and add them
The arithmetic operators which are presentggether. The result is then placed back onto the

here are similar to those which you will findpata Stack. Both the 4 and the 2 are dropped
described in most FORTH ”terature, thqrom the stack by the operation'

underlying difference however is that th . i .
qFOR‘?’IH %rithmetic operations are based upgl'rpe stack notation for the addition operator is:
the 4-bit CPU architecture of the MARC4. *+ EXP(nln2—nl+n2)

3.10.1 Number Systems gFORTH performs the subtraction similar to the

. _addition operator. The operator is the common
When coding in gFORTH standard numeriggehraic symbol with the stack notation:
representations are decimal values, for other EXP (N2 — nin2)

representations it is necessary to append a single

character for that representation. Examples:
Example: : TNEGATE (12-bit 2’s complement

. onthe TOS)
Bh —> hexadecimal (base 16) 0 SWAP — (thtmtl —thtm—tl)
pH 7 hexadetimal E pase 10 g 0 ROT —¢ (th tm —tl — th —tl —tm)
11 —> ecima ase 1
1011b—> binary (base2) 2\(/)\/1 F? SE/)VTAP—C (thl —l —tmh— tl —tm —th)
1011B—> binary (base 2) (=t —tm —th — -t)

01/96 43

MARC4 Programmer’s Guide TE MIC

Programming in gFORTH TELEFUNKEN Semiconductors
: 3NEG! (12-bit 2's complementin the M+ andM- operators.
an array)
YIO[+Y]@ 0 [+Y]@ (addr —Otm Ot) \oooom s,
—[Y-]! —c [Y-]! (0tmOt—) |F 2DROP0O \IF overflow, THEN reset Voltage
0[Y]l@ —c [Y]! (0tm -t —) ELSE 10 M- THEN
; Voltage 2!

0. Increment and Decremen
3.10.3 Increment and Decrement 3.10.5 BCD Arithmetic

Increment and decrement instructions are DAA and DAS
common to most programming languages,
gFORTH supports both with the standar@hecimal numbers are usually represented in

syntax: 4-bit binary equivalents of each digit using the
1+ incremennew—TOS: = old—TOS + 1 binary-coded-decimal coding scheme. The
1- decrement new-TOS: = 0ld-TOS -1 gFORTH instruction set includes tBAA and
DAS operations for BCD arithmetic.
Example:
DAA Decimal adjust for BCD arithmetic,
tInc-Dec 10 (—Ah) adds 6 to values between 10 and 15, or
1+ (Ah—Bh) if the carry flag was set
1-1- (Bh—oh) yfiag :
Fh (1111)—>50101) and carry flag set
Note: The Carry flag in the CCR is naffected by these Eh (1110) —>4(0100)
MARC4 instructions, whereby the Branch flag is Dh (1101)—>3(0011)
set, if the result of the operation gets zero. Ch (1100)—>2(0010)
Bh (1011)—> 1 (0001)
3.10.4 Mixed-length Arithmetic Ah (1010)—> 0 (0000)
gFORTH supports mixed-length operators sud®AS Decimal arithmetic for BCD
asM+, M-, M* andM/MOD . In the examples subtraction, builds a 9's complement
below a 4-bit value is added/subtracted to/from for DAA and ADDC, the branch and
an 8-bit value (generating an 8-bit result) using carry flags will be changed.
Examples:
: DIG- \ Digit count LSD_Addr —
Y! SWAP DAS SWAP \ Generate 9's complement
#DO \ Digit count — Digit
Y@ + DAA [Y-]! \ Transfer carry on stack
10 —-?LEAVE \ Exit LOOP, if NO carry
#LOOP \ Repeat until index =0
DROP \ Skip TOS overflow digit
BCD_1+! \ RAM_Addr —
Y! [Y]@ \ Increments BCD digit
1 + DAA [Y] \'in RAM array element
T Array_1+ \'Inc BCD array by 1 (n array[n] —)
Y! SET_BCF (Start with carry =1)
BEGIN
[Y]l@ 0 +CDAA [Y-]!
1—
UNTIL
DROP

44 01/96

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors Programming in gFORTH

3.10.6 Summary of Arithmetic Words

The following list contain more useful arithmetic words. The full list and implementation may be
found in theMATHUTIL.INC file

D+ (d1d2 —d_sum) Add top two 8-bit elements

D— (dl1d2 —d2-d1) Subtract top two 8-bit elements
D+! (nh nl addr —) Add 8-bit TOS to memory

D-! (nh nl addr —) Subtract 8-bit TOS from memory
M+ (din—d2) Add 4-bit TOS to an 8-bit value
M- (din—d2) Sub 4-bit TOS from 8-bit value
M+! (naddr—) Add n to an 8-bit RAM byte

M-! (naddr—) Subtract n from 8-bit RAM byte
M/ (d n—d_quotient) Divide n from d

M* (dn—d_product) Multiply d by n

M/MOD (dn—n_quotn_rem) Div n from d giving 4-bit results
D/MOD (dn—d_quotn_rem) Div 8-bit value &4-bit remainder
TD+! (daddr—) Add 8-bit TOS to 12-bit RAM var.
TD-! (daddr—) Sub 8-bit from 12-bit RAM var.
TD+ (daddr—t) Add 8-bit to 12-bit RAM var.

TD- (daddr—t) Sub 8-bit from 12-bit RAM var.
D->BCD (d—n_100n_10n_1) Convert 8-bit binary to BCD

3.11 Logicals in the CCR are used by many of the gFORTH

_ _ __logical operators.
The logical operators in gFORTH permit bit

manipulation. The programmer can input a bg 11.1
stream from the input port, transfer it onto the ™
expression stack and then shift branches and thige truth tables shown here are the standard
bit pattern left or right, or the bit pattern can beables used to represent the effects of the logical
rotated onto the TOS. The Branch and Carry flagperators on two data valuegl(andn2).

Logical Operators

NOT OR AND XOR
nl nl’ nl n2 nlvn2 nl n2 nl”n2 nl n2 | n1 XOR n2
0 0 0 0 0O O 0 0 0 0
0 1 0 1 1 0 1 0 0 1 1
1 0 1 1 0 0 1 0 1
1 1 1 1 1 1 1 1 0

These gFORTH operators take the top values dthe stack notation for all logical gFORTH words
of the expression stack and perform the desirexd

logical operation. The resultant flag setting and EXP (nln2 —n3)

the stack conditions are described in the

gFORTH Language Reference Dictionary

01/96 45

MARC4 Programmer’s Guide TEMIC
Programming in gFORTH TELEFUNKEN Semiconductors

As an example examine the logicAND the specified memory location will be
operation with the data values 3 and %exclusive-ORed.
Representing these values in 4-bit binary, and

performing theAND operator: Example:
VARIABLE LED_Status
0101b 0011b (— 0101b 0011b) Toggle—LED
AND (0101b 0011b —0001b) 0001b LED_Status TOGGLE (toggles bit 0
results in a value of 1 appearing on the TOS. The only)

Branch flag will be reset, since the result of the
logical operation is non-zero.

Example: SHIFT and ROTATE Operations

: Logicals The MARC4 instruction set contains two shift

3 7 OR (—7) and two rotate instructions shown in figure 2.8
3 7 AND (7—73) The shift operators multiplySHL) and divide
ZOT XOR ((; g:; g; (SHR) the TOS value by two. These instructions
2DROP (79—) g/re identical to the gFORTH macros #rand
TOGGLE The rotate instructionrROR andROL shift the

TOS value right/left through the Carry flag, will
Tause the Carry and Branch flags to be altered.
When using these instructions it is advised to set
or reset the flags within your initialization

The TOGGLE operation is classified in th
gFORTH Language Reference Dictionaryas

belonging to the set omemory operations
though thisis true thEOGGLE and its relatives : - -

the DTOGGLE are all used to change bitroutlne, using elt_her theSET_BCF or the

o LR_BCF instructions.

patterns at a specified memory address. For the —
TOGGLE operation the 4-bit value located at

Mnemonic Description Function
SHR Shift TOS right 3210
2/ into carry E “
3210

ROR Rotate TOS “

right through carry

SHL i
s Shift TOS left “ E

into carry
~oL Rowte TOS et | G
through carry

Figure 8. Shift and rotate instructions

46 01/96

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors Programming in gFORTH

Example: In the GREATER-EQUAL example, the top two

Write the necessary gFORTH word definitionStack values 5 and 9 will be removed from the

to flip a data byte (located on TOS) as showsfack and used as input values for the
below: greater-or-equal operation. If the second value

(TOS-1) is greater-or-equal the TOS value then
the branch flag in the CCR will be set.

Before flip: 3210 After flip: 4567) i
7654 0123 After the comparison operation has been
FlipBits performed by the MARC4 processor, neither of
Z#DO the two input values will be contained on the
SWAP SHR Expression Stack.
SWAP ROL : GREATER-EQUAL 9 5 (—95)
#LOOP >= . (95—[C-B])
NIP
* FlipByte FlipBits ~ SWAP FlipBits; 3-12.3 <>, =
These two qFORTH comparison operators can
3.12 Comparisons be used to determine the Boolean (true/false)

' . value (e.g. setting/ resetting the Branch flag in
The gFORTH comparison operations (such asthe CCR). If the second value on the stack is
or <) will set the branch flag in théCR, if the not-equal (<>) to the TOS value, then the
result of the comparison is true. The stack effedtanch flag in the CCR will be set. The two

of a comparison operation is: values that where on the TOS before the
EXP (nin2—) operation, will be dropped off of the stack after
the operation, has been executed, except that one
3.121 <,> or both items on the Data Stack were duplicated

before the operation.

The gFORTH word< performs a less than i _
comparison of the top two values on the stack. [ffiowever, the equality test] is executed, then
the second value on the Expression Stack &€ Branch flag will only be set, if both the TOS
less-than the value on the TOS, then the BrangRd the TOS-1 values are identical, again, as
flag in the CCR will be setFollowing the with all the comparison operations presented
operation, the stack will contain neither of th&1us far, the contents of the TOS and TOS-1
two values which where checked, as they will evious to the operations will be dropped from
dropped from the Expression Stack. the stack.
:Less-Example 9 5 (—95)

< (95—)
The > comparison operator determines if the3'
second value on the stack is greater than the TQS

value. If this condition is met, then the Branclr<@mpIe:
flag will be set in the CCR. 68 2CONSTANT PAR-FOR-COURSE
2VARIABLE GROSS-SCORE

12.4 Comparisons Using 8-bit Values

3.12.2 <=, >= . Check-golf-score
_ _ GROSS-SCORE2@PAR-FOR-COURSE D-
Using<=in your qFORTH program enables you 0 8 b<= IF GOOD-SCORE THEN

to determine if the second item on the stack is \ My Handicap is 8
less-or-equal to the TOS value. ;

01/96 47

MARC4 Programmer’s Guide TEMIC
Programming in gFORTH TELEFUNKEN Semiconductors

Note: There is a space betweenthe Oand 8. TI8s13 Control Structures

is required because literals less then 16
are assumed to be 4-bit values. The control structures presented here can be

This problem may be improved if an additional?iVidEd into two categories: Selection and
. . ooping. The tables below will compare
2CONSTANT is used, sinceCONSTANT gFORTH’scontrol structures to those found in

assumes an 8-bit value, e.g. : PASCAL

8 2CONSTANT My-Handicap As the comparison between the two languages
- Check-Golf-score shows, gFORTH offers a rich variety of

GROSS-SCORE2@PAR-FOR-COURSE D- Structures which will permit your program to
My-Handicap D<= branch to different code segments within the

IF GOOD-SCORE THEN program.

Table 3. gFORTH selection control structures

gFORTH PASCAL
<condition> IF <condition>
IF <operation> THEN THEN <statements> ;
<condition> IF <condition>
IF <operations> THEN <statements>
ELSE <operations> THEN ELSE <statements> ;
<value> CASE .. CASE <value> ..
<n> OF <operations> ENDOF .. <n> OF <statements> ;
ENDCASE .. END ;

Table 4. gFORTH loop control structures
gFORTH PASCAL
BEGIN <operations> <condition> UNTIL | REPEAT <statements> UNTIL <condition>

BEGIN <condition> WHILE <operations> | WHILE <condition> DO <statements> ;
REPEAT

BEGIN <operations> AGAINDb
<limit> <start> DO <operations> LOOP FOR i := <start> TO <limit> DO <statement$>

<limit> <start> DO <operations> <offset> +
LOOP

<limit> <start> DO <operations> <condition
?LEAVE <operations> LOOP

<n-times> #DO FOR i := <start> DOWNTO 0 DO
<operations> #LOOP <statements> ;

\Y4

48 01/96

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors Programming in gFORTH

3.13.1 Selection Control Structures First we duplicate the current TOS value. Then
Th de o b ted is d dant 9 is deposited onto the TOS so that the value to
€ code fo be executed IS dependant on,ga compared to is now in the TOS-1 and TOS-2

_spe_cific condition. _This condition can be1ocation of our data stack. The TOS value is now
indicated by the setting of the Branch flag in th@ompared with the TOS-1 value. IE TOS-1 is

tCk:]CRI.FThe (':I'?-lnltzrlgl opeéati(r)]n s_e%uin(_:tes fUCh @%ater than 9 then the condition has been met, so
€ i N h gEGINe mUiI'II'r:ILe ng the qFORTH words following thé& will be
operations such a - and - eyecuted. In the first example the TOS value will

BEGIN .. WHILE .. REPEAT will only be
executed if the Branch flag has been set. be dr?rizeg:g; rSetF:lIi(;E?eby the value 1.

IE .. THEN The CASE structure is equivalent to tHe ..
ELSE .. THEN structure. ThdF .. ELSE ..

ThelF .. THEN constructis a conditional phraseTHEN permits nested combinations to be
permitting the sequence of program statemenggnstructed in gFORTH. A nest#fd.. ELSE ..

to be executed dependant uponltaeondition THEN structure can look like this example:
being valid. The gFORTH implementation of the

IF .. THEN phrase requires that thesnditior»

computation appears befatee|F word. - 2BIT-TEST
IF .. THEN in PASCAL : DUP 0 = IF BITOOFF ELSE
IF <condition> THEN < TruestatementsELSE <False bupP1l = IF BITOON ELSE
statements} DUP 2 = IF BITlOFF ELSE
. _ BIT1ON
IF.. THEN in qFORTH : THEN THEN THEN THEN
<condition> |IF <True operations> ELSE <False DROP ;
operations>THEN In the word ‘2BIT-TEST’ the TOS is checked to
see if it contains one of three possible values. If
Example: either of these three values is on the TOS then the
GREATERO (n—nordl, IFn>9) desired word deflnlthn will be executed. If none
DUP 9 > IF of these three conditions has been met, then a
DROP 1 (THEN replace n — 1 y fourth word BIT1ON will be executed.
_ THEN (ELSE keep original n) Re-writing the ‘2BIT-TEST’ word using the
' $RESET CASE .. ENDCASE structure results in
" ssp SO (Power-on initialization entry) dFORTH code which is better readable and thus

>RP FCh (Init both stack pointers first)~ €asier to understand:
10 Greater-9(Compare 10 > 9 ==> BF true)
5 Greater-9(15—15)

2>DROP (15— j : 2BIT-CASE

CASE
0 OF BITOOFF ENDOF
1 OF BITOON ENDOF
2 OF BIT1IOFF ENDOF

The gFORTH word GREATER-9 checks to see BITLON

if the values given on TOS as a parameter to the enpcask -
word are greater than 9.

01/96 49

MARC4 Programmer’s Guide TEMIC
Programming in gFORTH TELEFUNKEN Semiconductors

The CASE construct is ideally used inOn each iteration of &0 loop, the LOOP
programming an input filter from a data streamgperator will increment the loop-index. It then
such as an input port which, depending uposill compare the index to the loop’s limit to
specific data values, it is possible to invokdetermine whether the loop should terminate or
predefined qFORTH words related to the reacbntinue.

input values. In addition to the FORTH-83 looping construct,
Example: the MARC4 has special hardware support for the
ple- gFORTH#DO .. #LOOP.
}ﬁ,ﬁ‘_’éﬁ{’*m e (BALL-CODE —) Asaresult of this, théDO. #LOOPis the most
CASE code and speed efficient definite loop and is
0 OF FREE-BALL ENDOF recommended for most loops.
HIGH-SCORE @ OF REPLAY ENDOF
TILT OF GAME-OVER ENDOF Example:
(ELSE) UPDATE-SCORE
ENDCASE : 5 #DO HELLO-WORLD #LOOP

Note: Unlike Pascal the case selectors are n

limited to constants (e.g. high-score @} then decremented at the end of each iteration

glthis example the loop control variable is set to
ntil 0. Henceb #DO .. #LOOP will loop 5

times.
3.13.2 Loops, Branches and Labels #LOOPSmay also be nested (to any depth). The
Definite Loops outer loop control variable is called J, when used

TheDO .. LOOP control structure is an examplenSIOIe the inner loop.

of a definite loop. The number of times that th%xample

loop will be executed by the MARC4 must beNESTED LOOPS

specified by the gFORTH programmer. 7 #DO \ OUTER LOOP
5 #DO \ INNER LOOP

Example: 1J+
: DO-Example Port0 OUT

12 5 (—Chbs) #LOOP

DO (Ch5—) #LOOP

|1 OUT (Copy loop-index lonto TOS)
LOOP (Write "56 789 AhBh"toportl) Care should be taken using loops to compute

multi-nibble arithmetic (e.g. 16-bit shift right).
Here thdoop index is starting at the value 5 andThis is because the standard FORTH-83 definite
is incremented until the value 12 is reached. Thisops change the Carry flag after each iteration
is an example where we have defined a definigg the loop. In such cases tHBO .. #LOOPis
looping range (from 5 to 11) for the statement®commended since the Carry flag is not
between th®O and thedLOOP to be repeated. affected.

50 01/96

TEMIC MARC4 Programmer’s Guide

TELEFUNKEN Semiconductors Programming in gFORTH
?DO .. (limit start —) IF start = limit THEN skip the loop
?LEAVE (—) exit loop if the Branch flag is true
LOOP, (—) increment loop-index by 1
DO .. (limit start —)) Init iterative DO..LOOP
—?LEAVE (—) if Branch flag is false, then exit loop
LOOP (—) increment loop-index by 1
?DO .. (limit start —) IF start = limit THEN skip the loop
LOOP (—)
DO .. (limit start —) Iterative loop with steps by <n>
+LOOP (n—) increment loop—index by n
#DO .. (n—) Execute #LOOP block n-times
#LOOP (—) decrement loop-index untiln =0
Indefinite Loops will be repeated until a conditional repeat

construct (such adJNTIL or WHILE ..

BEGIN indicates the start of an indefinite loo : .
control structure. The sequence of words whi EPEAT) is found. Write a counter value from
to 9 to Port 1, then finish the loop.

are to be performed by the MARC4 process

Example:
: UNTIL-Example
3 BEGIN
DUP Portl OUT (Write the current value to portl)
1+ (Increment the TOS value 3..9)
DUP 9 > (DUPIicate the current value ..)
UNTIL (the comparison will DROP it)
DROP (skip counter value from stack)

The encapsulateBEGIN .. UNTIL loop block Example:

will be executed until the Branch flag is setgjnsch \ Converts binary to 2 digit BCD

(TRUE). The Branch flag will be set upon (d [<99] — Dhi Dlo)

meeting the desired condition (TOS > 9). Fh <ROT \ 1's comp of 0’
BEGIN

The second conditional loops control structure OVER 0<> . .

BEGIN .. WHILE .. REPEAT will repeata " "'"o) \ High orderts zero

sequence of gFORTH words as long as a ROT 1- <ROT

condition (computed betweeBEGIN and REPEAT \ Count 10th

WHILE) is being met. I[I):UP 10 >=

qFORTH also provides aninfinite loop THEN 10 -ROT 1- <ROT

sequence, thBEGIN .. AGAIN which can only NIP SWAP NOT SWAP
be escaped bgXIT, -?LEAVE or ?LEAVE.

01/96 51

MARC4 Programmer’s Guide TE MIC

Programming in gFORTH TELEFUNKEN Semiconductors
NEXT-LIFE
> WAS-BAD? BRA HELL
gFORTH — Indefinite Loops HEAVEN: TRA_LA-LA NOP

BEGIN <Condi- | Condition tested at HELL TEMPESREATT—UBFSglfsV% RKHEAVEN

tion> start of loop ' :

WHILE SET_BCF BRA HELL

REPEAT

BEGIN ... Condition tested at end The ‘NEXT-LIFE’ word can also be written with

<Condition> of loop high-level constructs as:

UNTIL : NEXT-LIFE

— WAS-BAD? TOG_BF
BEGIN ... Unconditional loop IF
AGAIN BEGIN
TRA-LA-LA NOP \ HEAVEN

3.13.3 Branches and Labels AGAIN

e ELSE
While not recommended in normal BE?'N L WORK \HELL
programming, branches and labels have been AGAe”r\lnperat”re '
included in gFORTH for completeness. THEN

Labels have the following format:

<Label>: <instruction> | <Word> 3.13.4 Arrays and Look-up Tables

Note: There is no space allowed between the

label and the colon. Array Indexing

_ INDEX is a predefined gFORTH word used to
Example: access array locations. The compiler translates
My_Labl1: INDEX into a run-time code definition specific
Only conditional branches are allowed ifor the type of array being used (2ARRAY,
gqFORTH, i.e. the branch will be taken, if thd-ARRAY, etc.)

branch flag is set. Initializing and Erasing an Array

If unconditional branches are required, then care
must be taken to set the Branch flag beforlés'ng the gFORTH WOréRASE it is possible
branching. to erase an arrays’ contents to be filled with

zeros.
Example: Array Filling
SET_BCF BRAMy_Labl1 A third way to initialize an array is with the word

Note: The scope of labels is only within a colorFILL . FILL requires that the beginning address
definition. It is not possible to branchof the array and the size of the array be placed

outside a colon definition. onto the stack, followed by the value to be filled.
: FillArray (count n addr —)
Example: Y! DUP [Y]! (count n addr — count n)
VARIABLE SINS SWAP 1- (count n — n count-1)
VARIABLE = TEMPERATURE #DO DUP [+Y]!
WAS-BAD? #LOOP
SINS @ 3 >= DROP

52 01/96

TEMIC MARC4 Programmer’s Guide

TELEFUNKEN Semiconductors Programming in gFORTH
Looping in an Array <> ?LEAVE
1-

The gFORTH words contained between i@ UNTIL

andLOOP words will be repeated from between DROP TOG_BF

the start element and the limit element, the

element first deposited onto the stack will bArray examples are included in tg@ORTH
decremented following the store instruction. Language Reference Dictionary

Moving Arrays

The wordsMOVE and MOVE> will copy a 3135 Look-up Tables

specified number of digits from one address tioook-up tables are implemented in most

another within the RAM. The differencemicroprocessors to hold data which can be easily
between the two instructions is that MOVE accessed by means of an offset. gFORTH
copies the specified number of digits startingupports tables with the instructions:

from the lowest address, whiMOVE> starts ROMCONST, ROMByte@, DTABLE@ and

from the highest address. TABLE ;; .
These instructions are described in the gqFORTH
: C-MOVE (n Source Dest —) Language Reference Dictionary. The basic
\;(! X! > principle of MARCA4 tables is that the data to be
[Bég)”[\l I referenced is placed into contiguous ROM
1- TOG_BF memory during compile time when defined as a
WHILE ROMCONST. TheROMByte@ word fetches
[+X]@ [+Y]! an 8-bit constant from ROM defined by the
gSgEAT 12-bit ROM address which is on the top of the

expression stack. THETABLE@ word permits
the user to access a particular 8-bit constant from
the array via the arrays address value and the

The word ?Arrays=' compares two array 4-bit offset.

fields, starting at the last field element inn the program fileINCDATE.INC ’, found on
desending addresses, the maximum lengthe applications disk, the days of the month are
permitted is 16 elements. The result if the array$aced into a look-up table called
are equal or not is stored in the Branch flag. ‘DaysOfMonth’, the month is used to access the

Comparing Arrays

2Arrays= (n Array1[n] Array2[n] — table in order to return the number of days in the
[BF=1, if equal]) month.
X! Y! 0 SWAP
#DO
xJ@ [Y-]@- OR 3.13.6 TICK and EXECUTE
#LOOP

The word’ (pronouncedlICK, represented in
FORTH by the apostrophe symbol) locates a

’ . . word definition in memory and returns its ROM
Another way of implementing the array.

: . address.
comparison function is to use tlREGIN ..

0=

UNTIL loop as shown below. EXECUTE takes the ROM address (located on
5 _ the Expression Stack) of a colon definition and
?Arrays= (n Arrayl[n] Array2[n] — . .

[BF=1, if equal]) executes the Wor.EI'.ICK is useful for perfqrr_n_lng '
X1 VI vectored execution where a word definition is
BEGIN (nis decremented in loop) executed indirectly, this can be performed by

[Y-l@[X-]@

01/96 53

MARC4 Programmer’s Guide

Programming in gFORTH

TEMIC

TELEFUNKEN Semiconductors

placing the address of a definition into a variabléexibility as he can now perform complicated
the contents of the variable is then EXECUTEpointer manipulations.

as desired, this gives the user increased

Example:

CODE BCD_+1!
[Yl@ 1 + DAA [Y-]!
END-CODE
: Inc_Hrs
Time [Hrs_1] Y! BCD_+1!
IF
Time [Hrs_10] 1+!
THEN
Time [Hrs_10] 2@2 4 D=
IF
00 Time [Hrs_10] 2!
THEN

Inc_Hour
LAP_Timer [Hours] 1+!

\ <Y> = "Digit <Y-1>
\ Incr. BCD digit in RAM

\ x9:59 —> x+1 0:00
\0—>1lorl1-—>2

\ 24:00:00 ?
\ 23:59 —> 00.00
\ It's midnight

\ Inc Hours binary by 1
\ Wrap around at 16:00.00

Inc_Min \ <Y> = "Digit[Min_1]
BCD_+1! \ 18:29 —> 18:30
IF \ On overflow ..
[Y|@ 1+ 6 CMP_EQ[Y] \ 18:59 —> 19:00
IF
0 [Y-] \ Reset Min_10
Hours Inc 3@ EXECUTE \ Computed Hrs_Inc’
[EORDO]
THEN
THEN
: Inc_Secs \ <Y> = "Digit[Sec_1]
BCD_+1! \ Increment seconds
IF \ 8:25:19 —> 8:25:20
[Yl@ 1+ 6 CMP_EQ[Y]!
IF \ 8:30:59 —> 8:31:00
0 [Y-]! \ Reset Sec_10
Inc_Min \ Incr. Minutes
THEN
THEN
Inc_1/100s
BCD_+1! \ Increment 10_ms
IF \ 25.19.94 —> 25.19.95
BCD_+1! \Incr. 100_ms
IF \ 30.49.99 — 30.50.00
Inc_Secs \ Incr. seconds ..
THEN
THEN
IncTime \ Incr. T.O.D.
Inc_Hrs Hours_Inc [2] 3! \ Note use of Tick
54 01/96

TEMIC

TELEFUNKEN Semiconductors

MARC4 Programmer’s Guide
Programming in gFORTH

Time [Sec_1] ! Inc_Secs

Inc_10ms

" Inc_Hour Hours_Inc [2] 3!
LAP_Timer [10_ms] Y!
Inc_1/100s

\ Increment seconds

\ Incr. LAP timer
\ Note use of TICK

\ Increment 1/100 sec

\ Excerpts of program 'TEST_05" which includes TICKTIME

9 CONSTANT Seed

6 ARRAY Time

7 ARRAY LAP_Timer
3 ARRAY Hours_Inc
2 ARRAY C_INT6

VARIABLE RandomUpdate
VARIABLE LAP_Mode
VARIABLE TimeCount

$INCLUDE LCD_3tol
$INCLUDE TickTime

StopWatch
C_INT6 [1] D-1!
IF

26 C_INT6 2!

Inc_10ms RandomUpdate 1-!

IF
Seed RandomUpdate !

LAP_Timer [1] Show6Digits

THEN
THEN

INT5
1 TimeCount TOGGLE
IF DI IncTime El THEN

INT6
LAP_Mode @ O=
IF StopWatch THEN

$RESET
>SP SO >RP FCh
Vars_Init (etc.);

\ Random display update
\ Current Time Of Day
\ Stop Watch time
\ Dest. of computed GOTO
\ INT6 counter

\ LAP_Timer or T.O.D. display
\ Count RTC interrupts

\ Real-Time Clock Interrupt every 1/2s

\ Be on the save side

\Stop Watch Interrupt every 244.1 usec

\ Init stack pointers first
\ Setup arrays and prescaler

01/96

55

MARC4 Programmer’s Guide TE MIC

Programming in gFORTH TELEFUNKEN Semiconductors
3.14 Making the Best Use of Clearly ‘CODE’ definitions have no implied
Compiler Directives EXIT (or subroutine return) on termination.

Occasionally, a colon definition does not require
Compiler directives allow the programmer tan EXIT on termination, in this case thg’*
have direct manual control over the generatigtatement is used instead of the °
and placement of program code and RAM
variables. The qFORTH compiler will
automatically generate efficient code, soitisn
necessary or recommended to hand optimise the
application program at the beginning of thd7 2CONSTANT Du
project. However, as the first version of th€-ope Must_be—fast Xi X|@ 1+ [X]!

g[xamples:

ff—Value

application is completed, the following compiler END-CODE
directives can be used to “fine tune” the program. Correlate-Temperature

. . . . Read-Temperature (—ThTl)
A complete list of all comp!ler dlrgctlves may b€ 55UP Duff-value D= IF \Make a quick exit if
found in the documentation shipped with the 2DROP \ duff data read in
gFORTH2 compiler release diskette. EXIT \ Note use of EXIT

THEN
. Do—Correlation Th Tl —
3.14.1 Controlling ROM Placement ()
By forcing a zero page placement of commonly HALT BEGIN AGAIN \f'”ce this loop
. . never terminates,

used words, a single byte short call will be used \ then we can save
to access the word, hence saving a byte per call. the EXIT
Examples:

3.14.3 Controlling Stack Side Effects
Called—a—lot SWAP DUP [Z]; i
\ Place anywhere in zero page The gFORTH compiler attempts to calculate the

stack effects of each word. Sometimes this is not

Once‘i”‘a‘b'“e\‘ moon 'I”“_R,AM [NF]) : possible, hence the two directives [E <number>
On't place In zero Fage R <number>] allow the programmer to
Very-Small-Word 3>R DUP 3R@ ; AT 23h manually set stack effects of the Expression and

\ Place in 5 byte hole between the Return Stack.
zero page words

Examples:
3.14.2 Macro Definitions, EXIT and ;; : I-know-what-'m-doing BEGIN DUP 1-
. . . UNTIL[E 0] ;

If fast execution is required then critical words Get Numbers \DepeLding O]n the
may be invoked as macros and expanded value of Flag
‘in-line’. In general, macros are identical in Flag @ 5 = \theIF..ELSE .. THEN
syntax to word definitions, except the colon and block will have
semicolon are replaced withCODE F \ a stack effect °i§4 or

ELSE

123[E4]

THEN

56 01/96

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors Programming in gFORTH

3.14.4 $INCLUDE Directive

. , , , $DEFINE Emulation \ Use EVA prescaler
It is good programming practice to split a larg&FpEF Emulation

program into a number of smaller modules, one Enh CONSTANT Prescaler 2
fle per module. gFORTH allows the ChCONSTANT 4 KHz
programmer to do this with th@INCLUDE $ELSE

<filename[.INC]> directive. This directes the Fh CONSTANT Prescaler_2
compiler to temporarily take the input source Dh CONSTANT 4_KHz

from another file. $ENDIF
Include files may be nested up to @ maximuFpEF Emulation
$ELSE
. INT6 process ;
Example: $ENDIF
$INCLUDE Lcd-Words \ include the LCD *“tool
box” . .
Update_LCD o 3.14.6 Coptrplllqg XY Register
Colon-State @ Blink-Colon? Optimisations
The X/Y optimize qualifiers of the qFORTH
compiler help to control the depth of desired
3.14.5 Conditional Compilation optimization steps.

Conditional ~ compilation enables the® XYLOAD

programmer to control which parts of thehe sequencalT p .. LIT_g X! will be
program are to be compiled. For example @ptimized to>X $pq

typical program under development has extra

code to aid debugging. This code will b XY@

removed on the final version. Using conditionahe sequence>X $pq [X]! will be optimized to
compilation the programmer can keep the all th&X]' $pg

debugging information in the source, buf XYTRACE

generate code only for the application simply by . , ,
commenting out the $DEFINE DEBUG feloading thex or Y register (i.e: sequences of
>X $pqg will be replaced by+X]@ or [Y-]!

directive.) _
operations whenever possible.
Examples: The gFORTH compiler keeps track of which
$DEFINE Debug \ IF this directive is variable is cached in theand Y registers inside
\ commented out a colon definition.
\ THEN no debugging
\ code is generated Example:
INT2

The variables 'On_Time’ and 'SwitchNr’ are

$IFDEF Debug stored in consecutive RAM locations.

CPU-Status Port6 OUT
$ENDIF
Process-Int2

01/96 57

MARC4 Programmer’s Guide

Programming in gFORTH

TEMIC

TELEFUNKEN Semiconductors

gFORTH Intermediate XYLOAD, XY@! Final Code after
Source Code Optimized XYTRACE

On_Time @ LIT 3LIT 4 [>X]@ $On_Time [>X]@ $On_Time
SwitchNr +! X! [X]@ [>Y]@ $SwitchNr [+X]@

LIT 3LIT 5 ADD ADD

Yl Y@ [Y)! X]!

ADD

[Y]!

10 Bytes 6 Bytes 5 Bytes

3.15 Recommended Naming Conventions

3.15.1 How to Pronounce the Symbols

! store [1 square brackets

@ fetch “ quote

sharp or “number” ' as prefix: Tick; as suffix: prime
$ dollar ~ tilde

% percent | bar

A caret \ backslash

& ampersand / slash

* star < less-than; left dart

() left paren and right paren ; paren > greater-than; right dart
- dash; not ? guestion or “query”

+ plus : comma

= equals dot

{} faces or “curly brackets”

Form Example Meaning

Arithmetic

lname 1+ integer 1 (4-bit)

2name 2DUP integer 2 (8-bit)

+name +DRAW takes relative input parameters
*name *DRAW takes scaled input parameters
Data structures

names EMPLOYEES table or array

#name #EMPLOYEES total number of elements
name# EMPLOYEE# current item number (variable)
(n) name EMPLOYEE [13] sets current item

58 01/96

TEMIC

TELEFUNKEN Semiconductors

MARC4 Programmer’s Guide
Programming in gFORTH

+name
name+
/name

>pame

Direction, conversion

name<
name>
<name
>name
name>name
\name
/name

Logic, control

name?
-name”?
?name
+name
name
-name

Memory

@name
Iname
name!
name@
"name

Numeric types

Dname
Mname
Tname
Qname

+EMPLOYEE
DATE+

/SIDE

>IN

SLIDE<
MOVE>
<PORT4
>PORTO

FEET>METERS

\LINE
/LINE

SHORT?
-SHORT?

advance to next element

size of offset to item from beginning of structure
size of (elements “per”)

index pointer

backwards
forwards
from
to
convert to
downward
upward

return boolean value
returns reversed boolean

?DUP (maybe DUP) operates conditionally

+CLOCK
BLINKING
-CLOCK
BLINKING

@CURSOR
ICURSOR
SECONDS!
INDEX@
"INC-MINUTE

D+
M*
T*
Q*

enable
or, absence of symbol
disable

save value of
restore value of
store into
fetch from
address of name

2 cell size, 2's complement integer encoding
mixed 4 and 8-bit operator

3 cell size

4 cell size

These naming conventions are based on a proposal given by Leo Brodie in his book 'Thinking

FORTH'.

01/96

59

MARC4 Programmer’s Guide TEMIC
Programming in gFORTH TELEFUNKEN Semiconductors

3.16 Book List
3.16.1 Recommended Books

“Starting Forth” is highly recommended as a good general introduction to FORTH especially
chapters 1 to 6.

“Starting FORTH " is also now available in German, French, Dutch, Japanese and Chinese.

“Thinking FORTH " is the follow-on book to “Starting FORTH” and discusses more advanced
topics, such as system level programming.

“Complete FORTH" has been acknowledged as the definitive FORTH text book.

Title: “Starting FORTH” (2nd edition)
Author: Leo Brodie

Publisher: Prentice Hall, 1987

ISBN: 0-13-843079-9

Title: “Programmieren in FORTH” (German Version)
Author: Leo Brodie

Publisher: Hanser, 1984

ISBN: 3-446-14070-0

Title: “Thinking FORTH ”
Author: Leo Brodie
Publisher: Prentice Hall, 1984
ISBN: 0-13-917568-7

Title: “Complete FORTH”
Author: Winfield
Publisher: Sigma Technical Press, 1983

3.16.2 General Interest

The following list of books and papers show the spectruFORTH literature. These books are
of background interest ONLY and may contain information not 100% relevant to programming in
gFORTH on the MARCA4.

Title: “Mastering FORTH”
Author: Leo Brodie

Publisher: Brady Publishing, 1989
ISBN: 0-13-559957-1

Title: “Dr. Dobbs Tool-Box of FORTH Vol. 11",
Publisher: M&T Books, 1987
ISBN: 0-934375-41-0

Title: “FORTH” (Byte Magazine)
Author: L. Topin
Publisher: McGraw Hill, 1985

60 01/96

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors Programming in gFORTH

Title: “The use of FORTH in process contrdl
Proc. of the International '77 Mini-Micro Computer Conference, Geneva;
Authors: Moore & Rather, Publisher: | PC and Technology Press, England, 1977

Title: “FORTH: A cost saving approach to Software Developmeht
Author : Hicks

Publisher: Wescon/Los Angeles, 1978

Title: “FORTH'’s Forte is Tighter Programming”
Author: Hicks

Publisher: Electronics (Magazine), March 1979

Title: “FORTH a text and referencé
Authors: Kelly & Spier

Publisher: Prentice Hall, 1986

ISBN: 0-13-326331-2

01/96 61

|. Hardware Description

ll. Instruction Set

lll. Programming in gFORTH

V. gFORTH Language Dictionary

Addresses

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors gFORTH Dictionary

4 gFORTH Dictionary

4.1 Preface

This dictionary is written as a reference-guide for the programmers of the MARC4 microcontroller
family.

The qFORTH DICTIONARY categorizes each gFORTH word and MARC4 assembler instruction
according to its function (PURPOSE), category, stack effects and changes to the stack(s) by the
instruction. The affected condition code flags, X and Y register changes are also described in detail.
The length of each instruction is specified in the number of bytes generated at compile time. A
short demonstration program for each instruction is also included.

The language gFORTH is described in the sectiodRtbgramming in gFORTH” which includes
a language tutorial and learner’s guide. First time programmers of gFORTH are urged to read this
chapter before consulting this guide.

The associated effects and changes which the listed gFORTH word will result in are described in this
reference guide.

The entries are sorted in alphabetical order. You can find a reference in the index for unused MARC4
assembler mnemonics.

01/96 65

MARC4 Programmer’s Guide TEMIC
gFORTH Dictionary TELEFUNKEN Semiconductors

4.2 Introduction

Every entry in this dictionary is listed on a separate page.
The page structure for every entry contains the following topics:
1. “Purpose:”

This section gives a short explanation of each qFORTH vocabulary entry explaining its opera-
tional function.

2. “Category:”
Classification of the gFORTH vocabulary entries.

All entries in this dictionary are classified in the following categories (same categories are used
in the ‘MARC4 gFORTH Quick Reference Guide’):

A: Usage specific categories:
Arithmetic/logical

Arithmetic (‘+', ‘" ...), logical operations (‘AND’,'OR’) and bit manipulations (ROR’
..) on 4-bit or 8-bit values.

Comparisons
Comparison operations on either single or double length values resulting in the BRANCH
condition flag being set to determine the program flow (>, *>=", ...).

Control structures
Control structures are used for conditional branches like
IF ... ELSE ... THEN and loops (DO ... LOOP).

Interrupt handling
The MARCA4 instruction set allows the programmer to handle up to 8 hardware/software
interrupts, to enable/disable all interrupts. Other gFORTH words permit the programmer
to determine the actual used depth or available free space on the expression and return
stack.

Memory operations
Read, modify and store single, double or multiple length values in memory (RAM).

Stack operations
The sequence of the items, the number or the value of items held on the stack may be mo-
dified by stack operations. Stack operations may be of single, double or triple(12-bit)
length (‘'SWAP’, ...).

66 01/96

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors gFORTH Dictionary

B: Language specific categories:

Assembler instructions
gFORTH programs may contain MARC4 native code instructions; all gFORTH words
consist of assembler and/or gFORTH colon definitions and/or gFORTH macros (see
there).

gFORTH colon definitions
All ‘gFORTH colon definitions begin with a *:* and end with a *;’. They are processed
like subroutines in other high level languages; that means, that they are “called” with a
short (1) or long CALL (2 bytes) at execution time. The ;" will be translated to an EXIT
instruction (return from subroutine). At execution time the program counter will be loaded
with the calling address from the Return Stack. Colon definitions can be “called” from
various program locations as opposed to gFORTH macros, which are placed “in-line” by
the compiler at each “calling” address.

gFORTH macro definitions
All gFORTH macros begin with a ‘CODE’ and end with an ‘END-CODE’. The compiler
replaces the macro definition by in-line code.

Predefined data structures
Predefined data structures don’t use any ROM-bytes (except ROM look-up tables), they
are used for defining constants, variables or arrays in the RAM. With ‘AT’ you can force
the compiler to place a gFORTH word at a specific address in the ROM or a variable at a
specific address in the RAM.

Compiler directives
Used to include other source files at compile time, define RAM or ROM sizes for the
target device or to control the RAM or ROM placement (p.e. $INCLUDE, $RAMSIZE,
$ROMSIZE).

Most entries belong to a usage specific category and a language specific category. i.e. ‘+’ belongs
to the category arithmetic/logical and to the category assembler instructions; ‘VARIABLE’ be-
longs only to the category predefined data structures.

3. “Library implementation”

For gFORTH words which are not MARC4 assembler instructions, the assembly level imple-
mentation is included in the description. Refer to the library items “CODE” / “END-CODE” and
“” [" to better understand this representation.

These items will help when simulating/emulating the generated code with the simulator/emulator
or when optimizing your program for ROM length is required.

The MARCA4 native code is written in the dictionary for MARC4 assembler instructions.

The assembler mnemonic ‘(S)BRA means, that the compiler tries to optimise all BRA mnemon-
ics to SBRA (short branches only one byte),if the option is switched on and the optimizing is
possible (page boundaries can’t be crossed by the SBRA, only by the BRA).

01/96 67

MARC4 Programmer’s Guide TEMIC
gFORTH Dictionary TELEFUNKEN Semiconductors

4. “Stack effect”

Describes what will happen to the Expression and Return Stack, when executing the described
instruction. See ‘stack related conventions’ to better understand the herein used syntax and se-
mantics.

5. “Stack changes”

These lines include the number of elements, which will be popped from or pushed onto the
stacks, when executing the instruction.

6. “Flags”

The “flags” part of each entry describes the flag effect of the instruction.

7. “X'Y registers”

In this part the effect on the X and Y registers is described. This is only important, if the X or Y

registers are explicitly referenced.

Note: The compiler optimizer changes the used code inside of colon definitions through the
X/Y-register tracking technique.

Attention: The X register could be replaced in gFORTH macros by the Y register and vice versa
(see the explanation of the optimizer in the gFORTH compiler user’s guide)!

8. “Bytes used”

Number of bytes used in the MARC4 ROM by the qFORTH colon definition, the gFORTH
macro or by the assembler instruction.

Note: The optimizer of the compiler may shorten the actual program module.
9. “See also”

Includes similar gFORTH words or words in the same category. The '%’sign in this field signifies
that there are no words similar for this entry.

10. “Example”

An example for using the described gFORTH word. All examples are
tested and may be demonstrated with the MARC4 software development system.

68 01/96

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors gFORTH Dictionary

4.3 Stack Related Conventions

Expression Stack

Contains the program parameters, this stack is refered to as either the “EXP stack” or just “EXP”,
“data stack” or just “stack”. 4-, 8- and 12-bit data elements are placed onto the stack with the
least significant nibble on top.

Return Stack
Contains the subroutine return addresses, loop indices and is also used to temporarily unload pa-
rameters from the Expression Stack. This stack is refered to as either the “RET stack” or just

“RET".

X/Y-registers

The two general purpose 8-bit registers X and Y permit direct and indirect access (with addi-
tional pre-increment or post-decrement addressing modes) to all RAM cells.

Stack notation

addr 8-bit memory address
n 4-bit value (nibble- single length)
byte 8-bit value (represented as a double nibble)
d 8-bit unsigned integer (double length)
hmil 'higher middle lower’ nibble of a 12-bit value.
t 12-bit memory/stack
operation (triple length)
flags the flags of the Condition Code Register

The stack effects shown in the dictionary represent the stack contents separated by two dashes
(—) before and after execution of the instruction.

TheTop Of Stack (TOS) is always shown on the right. As an example, the SWAP and DUP
instructions have the following Expression Stack effects:

before: after the operation.
I I
V V
SWAP EXP:(n2nl—nln2)
DUP EXP:(nl—nlnl)
TOS (top of stack)

01/96 69

MARC4 Programmer’s Guide TEMIC
gFORTH Dictionary TELEFUNKEN Semiconductors

A similar representation specifying the stack effect of an instruction, shows the stack contents
after execution.

Expression Stack:

1 212 | TOS SWAP | 1| TOS DUP 1| TOS
Pushtwo | 1 Swap top 2 Duplicate
constants | ? two ele- ? top elements

ments

Return Stack notation:

A return stack entry contains a maximum of 3 nibbles on each level (normally a 12-bit ROM ad-
dress).

If (e.g. in a DO..LOOP) only 2 nibbles of 3 possibles are required, there is 'u’ for ‘undefined’ or
‘don’t care’ used in the notation:

31DO (RET: — ullimitlindex) or (RET: — u|3]|1)

4.4 Flags and Condition Code Register
There are three flags, which interact with gFORTH instructions. Together with a fourth flag,

which is reserved for TEMIC, they are accessible via the 4-bit Condition Code Register —
HCCRH-

A binary value 1 indicates the corresponding flag has been set, a binary value 0 indicates a
cleared flag.

The order of the flags in the CCR is as follows: used in text:

Carry C bit3 CARRY flag (MSB)
% % bit2 (reserved)
Branch B bitl BRANCH flag

Interrupt enable 1 bit0 | _ENABLE flag (LSB)

70 01/96

TEMIC

TELEFUNKEN Semiconductors

MARC4 Programmer’s Guide
gFORTH Dictionary

45 MARC4 Memory Addressing Model

Memory Operations

4-bit variable address points t-—> n | <—RAM

8-bit variable address points tt —> nh | nl

12-bit variable address pointstt—> | nh | nm | nl

nh = most significant nibble
nl = least significant nibble

See the entries 2/VARIABLE, 2/L/ARRAY and 2/3@ for further information.

The following example shows you, how to handle an 8-bit variable:

1 CONSTANT n_low
2VARIABLE KeyPressTime

: Example
0 0 KeyPressTime 2!
KeyPressTime 2@ 1 M+

IF DROP1 THEN
KeyPressTime 2!

(constant and variable declaration)
(8-bit variable)

(initialise this variable

(increment by 1 the 8-bit variable)
(the lower nibble is on top of)
(resetto 01h on overflow)
(store the new 8-bit value back)

01/96

71

MARC4 Programmer’s Guide
gFORTH Dictionary

TEMIC

TELEFUNKEN Semiconductors

4.6 Short Form Dictionary
MARC4 — Control Commands

Command | Bytes Expression Stack Return Stack CY |B| |

AGAIN 3 CY |B

BEGIN 0

DO 1 limit index— — limit index

#DO 1 index— — U u index

?DO 5 limit index— — u limit index Cy |B

LOOP 9 — (N1 n2 n3) — — (-1 level) — CY |B

#LOOP 4 u u index— B

u uindex—
+LOOP 10 | n— u limit index— Cy |B
u limit index+n

?LEAVE 2

—?LEAVE 3 B

REPEAT 3 CY |B

UNTIL 3 B

WHILE 3 B

CASE 0

ELSE 3 CY |B

ENDCASE 1 n—

ENDOF 3 CY |B

EXECUTE 3 ROMaddr — —(2+x level)—

IF 3 B

OF 4 | n1—nln2 —(nl) CYy |B

THEN 0 CY |B

CCR@ 1 —n

CCR! 1 | n— Cy |B| I

CLR_BCF 2 —(1 level)— CY |B

El 2 Cy |B| I

EXIT 1 oldPC —

DI 1 I

SET_BCF 1 CY |B
SWIO..SWI7 | 4 — (2 level) — |

TOG_BF 1 B

72

01/96

TEMIC

TELEFUNKEN Semiconductors

MARC4 Programmer’s Guide
gFORTH Dictionary

MARC4 — Mathematic Commands

Command |Bytes Expression Stack Return Stack CY |B| I
ADD 1 | n1ln2—nl+n2 Cy | B
+ 1 | nln2—nl+n2 CY | B
+! 4 | naddr— CYy | B
INC 1 {n—n+l B
1+ 1 |n—n+l B
1+! 4 | addr— B
ADDC 1 | n1n2—nl+n2+CY Cy | B
+C 1 | nln2—nl+n2+CY CY | B
D+ 7 | dld2 —di1+d2 — (1 level) — CY |B
D+! 8 | daddr— — (1 level) — CY | B
M+ 5 |dn—d+n — (1 level) — CY |B
T+! 19 | nh nm nl addr — (2 level) — CY |B

— (1 level) —
TD+! 20 | d addr — (1 level) — —(2 level)— CY |B
DAA 1 |n—n+6 CYy | B
SuUB 1 | nln2—nl-n2 Cy | B
- 1 | nln2—nl-n2 CY | B
DEC 1 n—n-1 B
1- 1 n—n-1 B
1-! 4 | addr— B
SUBB 1 | n1n2—nl+/n2+CY Cy | B
-C 1 | n1n2—nl+/n2+CY Cy | B
D- 8 |dld2—dl1-d2 — (1 level) — Cy | B
D-! 10 | d addr — — (1 level) — CY | B
M- 5 | din—dl-n — (1 level) — CY |B
T-! 22 | nh nm nl addr — (2 level) — CYy | B
— (1 level) —
TD- 22 | d addr — (1 level) — — (2 level) — CY |B
DAS 3 n—9-n CYy | B
2* 1 |n—n*2 CY |B
D2* 4 |d—d*2 CYy | B
2/ 1 |n—n/2 CYy |B
D2/ 4 | d—d/2 Cy | B
CMP_EQ 1 |nln2—nl Cy | B
= 2 |nln2— CYy | B
0= 3 |n— Cy | B

01/96

73

MARC4 Programmer’s Guide
gFORTH Dictionary

TELEFUNKEN Semiconductors

TEMIC

Command Bytes | Expression Stack Return Stack Y |CY B|I
D= 13 | d1d2— — (1 level) — CY |B
DO= 2 |d— B
CMP_GE 1 |nln2—nl CY | B
>= 2 | nln2— Cy |B
D>= 19 | d1d2— — (1 level u d2h d2l) — CYy |B
CMP_GT 1 |nln2—nl CY |B
> 2 | nln2— CYy | B
D> 16 | d1d2— — (1 level u d2h d2l) — CYy |B
CMP_LE 1 |nln2—nl CY | B
<= 2 |nln2— CY |B
D<= 19 | d1d2— — (1 level u d2h d2l) — CY |B
CMP_LT 1 |nln2—nl CY |B
< 2 nin2 — CY | B
D< 16 | d1d2 — — (1 level u d2h d2l) —| Cy |B
CMP_NE 1 |nln2—nl CY |B
<> 2 |nln2— CY |B
0<> 3 |n— CY | B
DO<> 3 |d— B
D<> 10 | d1d2— — (1 level) — CY
MAX 7 | n1 n2 — nmax — (1 level) — CYy |B
DMAX 30 | d1d2 —d1d1l d2— dmax — (3 level) — Cy |B
MIN 7 | n1ln2—nmin — (1 level) — Cy |B
DMIN 30 | d1d2 —d1 d1 d2— dmin — (3 level) — Cy |B
NEGATE 2 |nl—-nl B
DNEGATE 8 |d——d — (1 level) — CY |B
NOT 1 |nl—/nl B
ROL 1 CY | B
ROR 1 CY | B
SHL 1 |n—n*2 CYy |B
SHR 1 |n—n/2 CY |B
AND 1 | nln2—nlandn2 B
OR 1 nln2—nlvn2 B
XOR 1 | nln2—nlxorn2 B
TOGGLE 4 | nladdr— Y B
D>S 2 |d—n

S>D 2 |n—d

74 01/96

TEMIC

TELEFUNKEN Semiconductors

MARC4 Programmer’s Guide
gFORTH Dictionary

MARC4 — Memory Commands

Command | Bytes Expression Stack Return Stack XY |CY I
@ 2 addr —n XY
2@ 3 addr — nh nl XY
3@ 4 addr — nh nm nl X 1Y
X@ 1 — Xh XI
X]l@ 1| —n
[+X]@ 1 —n X
[X-]@ 1 —n X
Y@ 1 —YhYiI
[Yl@ 1| —n
[+Y]@ 1 —n Y
[Y-]l@ 1 —n Y
DTABLE@ 14 | ROMaddr n — conh conl — (2 level) — CcY
ROMBYTE@ 2 ROMaddr — conh conl —(2 level)- - (2) —
! 2 n addr— XY
2! 4 nh nl addr — XY
3! 7 nh nm nl — — (Llevel) — [X|Y
X! 1 Xh XI — X
[X]! 1 n—
[+X]! 1 n— X
[X=]! 1 n— X
Y! 1 Yh Yl — Y
[Y]! 1 n—
[+Y]! 1 n— Y
[Y-]! 1 n— Y
ERASE 14 | addr n— —(2level)— | X |Y
FILL 24 | addrnln2 — — (level) — |X|Y
MOVE 14 | nfromto — —(2level)— | X |Y
MOVE> 10 | nfromto— —((2level)— |X|Y
IN 1 port — data
ouT 1 data port —
' 3 — — ROMaddr
01/96 75

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

MARC4 — Commands

Command | Bytes Expression Stack Return Stack X|Y |CY |B|I
! 2 n addr— XY
#DO 1 index— — u u index
#LOOP 4 U u index— B
U u index-1
+LOOP 10 | n— u limit index— CY |B
u limit index+n
—?LEAVE 3 B
<ROT 2 nln2n3 —n3nln2
>RP xxh 2
>SP xxh 2
?DO 5 limit index— — u limit index CYy |B
?DUP 5 n—nn CYy |B
?LEAVE 2
@ 2 addr—n XY
[+X]! 1 |n— X
[+X]@ 1 |—n X
[+Y]! 1 |n— Y
[+Y]@ 1 |—n Y
[X-]! 1 |n— X
X-]@ 1 |—n X
[X]! 1 |n—
Xl@ 1 |—n
[Y-]! 1 |n— Y
[Y-]@ 1 |—n Y
[Y]! 1 |n—
[Yl@ 1 |—n
2! 4 nh nl addr — XY
2<ROT 14 | d1d2d3—d3dld2 — (4 level) —
2@ 3 | addr —nhnl XY
2DROP 2 | nln2—
2DUP 2 |d—dd
2NIP 4 | did2—d2
20VER 8 |dld2—dl1d2d1 ——(2 level u n2 nl) —
R@ 1 |—n uun—uun

76 01/96

TEMIC

TELEFUNKEN Semiconductors

MARC4 Programmer’s Guide
gFORTH Dictionary

Command | Bytes Expression Stack Return Stack X CY |B ||
2R@ 1 —nln2 unln2—unln2
2ROT 8 |dld2d3—d2d3dl — (1 leveludl) —
2SWAP 8 |did2—d2d1 — (1 level u u d2l) —
2TUCK 6 |dld2—d2dld2 — (1 level d11 d2) —
3! 7 | nhnm nl addr— — (1level)— | X
3@ 4 addr — nh nm nl X
3DROP 3 [nln2n3—
3DUP 4 | n1n2n3 — n1n2n3n1ln2n3 — (N1 n2n3) —
3R@ 1 —nln2n3 n3n2nl—n3n2nl
DAA 1 n—n+6 Cy | B
ADD 1 | nln2—nl+n2 CYy |B
+ 1 nln2 —nl+n2 CYy |B
+! 4 n addr — X CYy |B
INC 1 |n—n+l B
1+ 1 n—n+l B
1+! 4 | addr— X B
ADDC 1 nln2 — nl+n2+CY CY |B
+C 1 | n1n2—nl1+n2+CY CY |B
D+ 7 | dl1d2 —di1+d2 — (1 level) — CYy |B
D+! 8 | daddr— — (1 level)— | X CYy |B
DAS 3 | n—9-n CY |B
SUB 1 nln2 —nl-n2 Cy | B
- 1 nln2 —nl-n2 Cy | B
DEC 1 n—n-1 B
1- 1 n—n-1 B
1-! 4 | addr— X B
SUBB 1 | n1n2—nl+/n2+CY CYy |B
-C 1 | n1n2 —nl+/n2+CY CY |B
D- 8 | dld2—di1-d2 — (1 level) — CYy |B
D-! 10 | d addr — —(@level)— | X CY |B
2* 1 n — n*2 CY |B
D2* 4 | d—d*2 CY | B
2/ 1 n—n/2 Cy | B
D2/ 4 | d—d/2 CYy |B
AGAIN 3 CY |B

01/96

77

MARC4 Programmer’s Guide
gFORTH Dictionary

TELEFUNKEN Semiconductors

TEMIC

Command | Bytes Expression Stack Return Stack Y |CY |B|I
AND 1 nln2 —nlandn2 B
BEGIN 0
CASE 0 n—n
CCR! 1 |n— Cy Bl
CCR@ 1 —n
CLR_BCF 2 |——(1level)—— CY |B
CMP_EQ 1 | nln2—nl CYy | B
= 2 nlin2 — CYy B
0= 3 |n— CY | B

= 13 | d1d2— — (1 level) — CY | B
DO= 2 |d— B
CMP_GE 1 | nln2—nl CYy | B
>= 2 | nln2— CY | B
D>= 19 | dl1d2— -—(1 level u d2h d2l)-— CYy | B
CMP_GT 1 nlin2—nl Cy | B
> 2 | nln2— CYy | B
D> 16 | dl1d2— -—(1 level u d2h d2l)— CY | B
CMP_LE 1 | nln2—nl CY | B
<= 2 nin2 — Cy | B
D<= 19 | d1d2— -—(1 level u d2h d2l)-— CY | B
CMP_LT 1 | nln2—nl CYy |B
< 2 nln2— CYy B
D< 16 | dl1d2— -—(1 level u d2h d2l)-— CY | B
CMP_NE 1 nln2—nl Cy | B
<> 2 | nln2— CY |B
0<> 3 n— Cy | B
D<> 10 | d1d2— — (1 level) — CY | B
DO<> 3 |d— B
DECR 1 uun—uun-1 B
DEPTH 9 | —(SPh SPI SOh SOI)—n — (1 level) — CYy | B
DI 1 I
DMAX 30 | d1 d2 —d1 d1 d2— dmax — (3 level) — CY |B
DMIN 30 | dld2—d1ldl d2— dmin — (3 level) — CYy B
DNEGATE 8 |d—-d — (1 level) — CY |B
DO 1 limit index— — limit index
DROP 1| n—

78 01/96

TEMIC

TELEFUNKEN Semiconductors

MARC4 Programmer’s Guide
gFORTH Dictionary

Command | Bytes Expression Stack Return Stack Y |CY |B]|I
DROPR 1 uuu—
DTABLE@ 14 | ROMaddr — const.h const.| — (2 level) — CY |B
DTOGGLE 8 | daddr— — (1 level) — Y B
DUP 1 nl—nlnl
El 2 Cy |[B|I
ELSE 3 Cy | B
ENDCASE 1 |n—
ENDOF 3 Cy | B
ERASE 14 | addr n— — (2 level) — Y B
EXIT 1 oldPC —
EXECUTE 3 ROMaddr — — — (2 + x level) —
FILL 24 | addrnln2 — — (3 level) — Y B
I 1 | —index U u index—u u index
IF 3 B
IN 1 | port— data B
INDEX 8 | naddr— — (1 level) — CY |B
J 6 | —J — (-1 level) —
LOOP 9 —(n1 n2 n3)- — (-1 level) — CY |B
M+ 5 |dln—dl+n — (1 level) — CY |B
M- 5 |din—dl-n — (1 level) — CY |B
MAX 7 | nln2 — nmax — (1 level) — CY |B
MIN 7 | n1n2—nmin — (1 level) — CY |B
MOVE 14 | nfromto — — (2 level) — Y
MOVE> 10 | nfromto — — (2 level) — Y
NEGATE 2 'nl—-nl B
NIP 2 nln2 —n2
D>S 2 | d—n
NOP 1
NOT 1 nl—/nl B
OF 4 | nln2— CYy |B
OR 1 nln2—nlvn2 B
ouT 1 | data port—
OVER 1 n2 nl—n2nln2
PICK 13 | x—(2 level)- n[x] — (2 level) — Y | CY |B
>R 1 nl —uunl
2>R 1 nln2— —un2nl

01/96

79

MARC4 Programmer’s Guide
gFORTH Dictionary

TELEFUNKEN Semiconductors

TEMIC

Command | Bytes Expression Stack Return Stack X|Y|CY |[B]|I
3>R 1 nln2n3 — —n3n2nl
R> 2 |—n uun—
2R> 2 | —nln2 un2nl—
3R> 2 | —nln2n3 n3n2nl —
RDEPTH 13 | —(2level)—n — (1 level) — Cy |B
REPEAT 3 CY |B
RFREE 30 | —(3level)—n — (2 level) — CY |B
ROL 1 CY |B
ROLL 57 | x—(2 level)- — (4 level) — X|Y|CY |B|I
ROMBYTE@ 2 ROMaddr — conh conl — (2 level) —
ROR 1 CY |B
ROT 1 nln2n3—n2n3nl
RP! 1 | RPhRPI—
RP@ 1 | —RPhRPI
S>D 2 |n—d
SET_BCF 1 CY |B
SHL 1 |n—n*2 CYy |B
SHR 1 |n—n/2 CYy |B
SP! 1 | SPhSPI—
SP@ 1 | —SPhSPI+1
SWAP 1 n2nl—nln2
SWI0..SW17| 4 | —(2level) — I
T+! 19 | nh nm nl addr— (1 level) — — (2 level) — X|Y|CB |B
T-! 22 | nh nm nl addr — — (2 level) — X|Y|CY B
TD+! 20 | d addr — (1 level) — — (2 level) — X|Y|CY B
TD-! 22 | d addr — (1 level) — — (2 level) — X|Y|CY B
THEN 0 CY |B
TOG_BF 1 B
TOGGLE 4 | nladdr— XY B
TUCK 2 nln2 —n2nln2
UNTIL 3 B
WHILE 3 B
X! 1 | Xh Xl — X
X@ 1 | —XhXI
XOR 1 nl n2 — nl xor n2 Y
Y! 1 |YhYl—
Y@ 1 |—Yhvi

80 01/96

TEMIC

TELEFUNKEN Semiconductors

MARC4 Programmer’s Guide
gFORTH Dictionary

MARC4 — Stack Commands

Command | Bytes Expression Stack Return Stack CY I
DECR 1 uun—uun-1

DEPTH 9 —(SPh SPI SOh S0I)—n — (1 level) — CY
DROP 1 nl—

2DROP 2 nln2 —

3DROP 3 nln2n3 —

DROPR 1 uuu—

DUP 1 nl—nlnl

?DUP 5 n—nn CY
2DUP 2 d—dd

3DUP 4 n1n2n3 —n1n2n3n1ln2n3 —(n1 n2 n3)—

| 1 — index U u index—u u index

INDEX 8 d/n addr — — (1 level) — CcYy
J 6 —J — (-1 level) —

NIP 2 nln2—n2

2NIP 4 dld2 —d2

OVER 1 n2nl—n2nln2

20VER 8 dld2 —dld2d1l — (2 level u n2 n1) —

PICK 13 X —(2 level)- n[x] — (2 level) — CcYy
R@ 1 —n2 uunl—uunl

2R@ 1 —nln2 unln2—unln2

3R@ 1 —nln2n3 n3 n2 n1— n3 n2 nl

>R 1 nl —uunl

2>R 1 nln2 — —un2nl

3>R 1 nln2n3 — —n3n2nl

R> 2 —n uun—

2R> 2 —nln2 un2nl—

3R> 2 —nln2n3 n3n2nl —

RDEPTH 13 | —(2level)—n — (1 level) — CcY
RFREE 30 | —(3level)-n — (2 level) — CY
ROT 1 nln2n3—n2n3nl

2ROT 5-7| d1d2d3—d2d3d1l — (1 leveludl) —

<ROT 2 nln2n3 —n3nln2

2<ROT 14 | d1d2d3 —d3d1ld2 — (4 level) —

RP@ 1 — RPh RPI

RP! 1 RPh RPI —

SP@ 1 — SPh SPI+1

SP! 1 SPh SPI —

SWAP 1 n2 nl —nln2

2SWAP 8 dld2 —d2d1 — (1 level u u d2I) —

TUCK 2 nln2 —n2nln2

2TUCK 6 dld2 —d2d1ld2 — (1 level d1l d2) —

01/96

81

TEMIC MARC4 Programmer’s Guide

TELEFUNKEN Semiconductors Index
4.7 Index
Symbols < 186
| 36 <= 188
2DO 202 <> 190
DUP o4 <ROT 192
9LEAVE 206 > 196
; 15 >= 198
. 184 >R 200
| 150 >RP FCh 382
, o8 >SP 390
* (COMMENTY)’\ 98 NUmMbers
INTO ... INT7’ 322
0...Fh (15) 114

'SWIO ... SWI7 394 0 s
[+X]! 430 0o e
[+X]@ 424 o 120
[+Y]! 448 Lt 12
[+Y]@ 442 o 124
[X]! 428 L 16
[Xl@ 422 2 128
[X-]! 432 @ 138
[X-]@ 426 . 130
[Y]! 446) 132
[Yl@ 440 2<ROT 134
[Y-]! 450 2>R 136
[Y-]l@ 444 2JARRAY 140
#DO 90 2CONSTANT 142
#LOOP 92 2DROP 144
$AUTOSLEEP 94 SDUP 146
$INCLUDE 232 2LARRAY 148
$RAMSIZE 234 INIP 150
$RESET 96 20VER 152
$ROMSIZE 234 JR@ 156
@ 208 2R> 154
+ 100 2ROT 158
+1 102 2SWAP 160
+C 104 2TUCK 162
+LOOP 106 2VARIABLE 164
. 108 3! 166
—9LEAVE 110 3@ 170
—C 112 3>R 168
= 194 3DROP 172

01/96 83

MARC4 Programmer’s Guide TEMIC

Index TELEFUNKEN Semiconductors
3DUP 174 D0= 248
3R@ 178 DO<> 246
3R> 176 D2* 250

D2/ 252
A DAA 268
ADD 100 DAS 270
ADDC 104 DEC 124
AGAIN 210 EE;:};H Zi
ALLOT 212 DI 276
AND 214 DMAX 278
ARRAY 216 DMIN 280
AT 218 DNEGATE 282
DO 284
B DROP 286
BEGIN 220 DROPR 288
DTABLE@ 290
C DTOGGLE 292
CASE 222 DUP 294
CCR! 224
CCR@ 226 =
CLR_BCF 228 EILSE zig
gxi—i(é 122 END-CODE 300
- ENDCASE 302
CMP_GT 196 ENDOF 304
CMP_LE 188 ERASE 306
CMP_LT 186 EXECUTE 310
CMP_NE 190 EXIT 182, 308
CODE 230
CONSTANT 236 F
FILL 312
D
D+ 238 |
D+! 240 I 314
IF 316
S
e 260 INC 120
INDEX 320
D< 254
D<= 256 J
D<> 258 J 324
D> 262
D>= 264 L
D>S 266 LARRAY 326

84 01/96

TEMIC

MARC4 Programmer’s Guide

TELEFUNKEN Semiconductors Index
LIT 0..LIT F 114 RTI 182
LOOP 328

S

M S>D 384
M+ 330 SO 390
M- 332 SHL 130
MAX 334 SHR 132
MIN 336 SLEEP 94
MOVE 338 SP! 388
MOVE> 340 SP@ 386

SUB 108

N SUBB 112
NEGATE 342 SWAP 392
NIP 266
NOP 344 T
NOT 346 T+! 396

T-! 398
@) TD+! 400
OVER 354 TD-! 402
OF 348 THEN 404
OR 350 TOG_BF 408
ouT 352 TOGGLE 406

TUCK 410

P
PICK 356 U

UNTIL 412

R
R@ 314 \

R> 358 VARIABLE 414
RO 382

RDEPTH 360 W

REPEAT 362 WHILE 416
RFREE 364

ROL 366 X

ROLL 368 X! 420
ROMByte@ TABLE 370 X@ 418
ROMCONST 372 XOR 434
ROR 374

ROT 376 Y

RP! 380 Y! 438
RP@ 378 Y@ 436
01/96 85

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

“Store”

Purpose
Stores a 4-bit value at a specified memory location.

Category: gFORTH macro
Library implementation: = CODE ! Y! (naddr—n)
[Y]! (n —)
END-CODE

Changes in the really generated code sequence can result
through the compiler optimizing techniques (register tracking)

Stack effect: EXP (n RAM_addr —)
RET (—)
Stack changes EXP: 3 elements are popped from the stack

RET: not affected

Flags not affected

XY registers: The contents of the Y or X register may be changed.
Bytes used 2

See Also + 2! 31 @

86 01/96

TEMIC MARC4 Programmer’s Guide

TELEFUNKEN Semiconductors

gFORTH Dictionary

Example:
VARIABLE ControlState
VARIABLE Semaphore
. InitVariables (initialise VARs)
0 ControlState ! (Setup control flag)
2 Semaphore ! (Setup a preset value)

01/96

87

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

Htick”

Purpose

Leaves a compiled ROM code address on the EXP stack. Used in the form ’ <name>.

' searches for a name in the gFORTH dictionary and returns that name’s compilation address (code
address). If the name is not found in the dictionary, an error message results.

Category:. Control structure

Stack effect: EXP (——-ROM_addr)
RET (—)

Stack changes EXP: 3 nibbles are pushed on the stack
RET: not affected

Flags not affected

Bytes used 3

See Also EXECUTE

88 01/96

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors gFORTH Dictionary

Example:

" is typically used to initialize the content of a variable with the code address of gFORTH word
for vectored execution.

For Example, a program might contain a variable named $ERROR, which would specify the
action to be taken if a certain type of error occured. At compile time, $SERROR is "vectored” with
a sequence such as

3 ARRAY $ERROR

" ERROR-ROUTINE 8ERROR 3!

and the main program, when it detects an error, can execute the sequence
$ERROR 3@ EXECUTE
to invoke the error handler.

This program’s error-handling routine could be changed "on the fly” by changing the address
stored in $ERROR, without modifying the main program in any way.

01/96 89

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

#DO

"Hash-DO”

Purpose

#DO indicates the start of an iterative 'decrement—if-nonzero’ loop structure. It is used only within a
macrocolon definition in a pair with #LOOP. The value on top of the stack at the time #DO is executed
determines the number of times the loop repeats.The value on top is the initial loop index which will
be decremented on each iteration of the loop (see example 2).

If the current loop index | is not accessed inside of a loop block, this control structure executes much
faster than an equivalent n 0 DO ... LOOP. The standard FORTH—-83 loop structure n 0 DO ... -1
+LOOP maps directly to the behaviour of the n #DO ... #LOOP structure.

Category: Control structure / gqFORTH macro
Library implementation: CODE #DO >R
$#DO:
END-CODE
Stack effect: EXP (Index —)
RET (— ulullndex)
Stack changes: EXP: 1 elementis popped from the stack
RET: 1 element is pushed onto the stack
Flags #DO not affected
#LOOP : CARRY flag not affected
BRANCH flag = Set, if (Index—1 <> 0)
XY registers: not affected
Bytes used 1
See also #LOOP ?LEAVE —-?LEAVE

90 01/96

TEMIC

TELEFUNKEN Semiconductors

MARC4 Programmer’s Guide
gFORTH Dictionary

#DO

Example 1:

8 ARRAY result
: ERASE
<ROT V!
0 [Y]! 1-
#DO
0 [+Y]!
#LOOP

: Clear_Result
Result 8 ERASE

Example 2:

1 CONSTANT portl
: HASH-DO-LOOP

0 #DO

| 1- portl OUT

#LOOP

(8 digit BCD number)
(Fill a block of memory with zero)
(addr count —)
(count — count-1)

(Use the MARC4 pre—incremented store)

(REPEAT until length-1 =0)
(Clear result array)
(loop 16 times)
(write data to 'portl’: F, E, D, C...1,0.)
(repeat the loop.)

01/96

91

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

#LOOP

“Hash—-LOOP”

Purpose:

#LOOP indicates the end of an iterative 'decrement—if—nonzero’ loop structure. #LOOP is used only
within a colon definition in a pair with #DO. The value on top of the stack at the time #DO is executed
determines the number of times the loop repeats. The loop index is decremented on the return stack on
each iteration, ie. the execution of the #LOOP word, until the index reaches zero. If the new index is
decremented to zero, the loop is terminated and the loop index is discarded from the return stack.
Otherwise, control branches back to the word just after the corresponding #DO word.

If the current loop index | is not used inside a loop block this structure executes much faster than an
equivalent DO ...LOOP. The behaviour of the standard FORTH loop structure 0 DO ... -1 +LOOP is
identical to the #DO ... #LOOP structure.

Category: Control structure / gFORTH macro

Library implementation: = CODE #LOOP DECR (decrement loop index on RET)
(S)BRA _$#DO

_$LOOP: DROPR (drop loop index from RET)

END-CODE

Stack effect: EXP (—)
IF Index—1 >0 THEN RET (ululindex —u|u|Index-1)
ELSE RET (uju|Index —)

Stack changes: EXP: not affected
RET: If #LOOP terminates, top element is popped from the
stack

Flags: CARRY flag not affected
BRANCH flag set as long as index—1 <> 0

XY registers: not affected

Bytes used 3-4

See also: #DO ?LEAVE —?LEAVE

92 01/96

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors gFORTH Dictionary

#LOOP

Example:

16 ARRAY LCD-buffer

s FILL-IT Y! (ncountaddr — ncount)
#DO (end address was on stack)
DUP [Y-]! (duplicate and store value)
#LOOP

; Setup_Full_House
Fh 0 LCD-buffer [15] FILL-IT

01/96 93

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

$SAUTOSLEEP SLEEP

“Autosleep”

Purpose:

The $AUTOSLEEP function will automatically be placed at ROM address $000 by the compiler and
imay be redefined slightly by the user. The return stack pointer is initialized in $RESET to FCh. After
the last interrupt routine is processed and no other interrupt is pending, the PC will be automatically
loaded to the address $000 (JAUTOSLEEP). This forces the MARCA4 into sleep mode through pro-
cessing the SAUTOSLEEP routine. This sleep mode is a shutdown condition which is used to reduce
the average system power consumption, whereby the CPU is halted as well as the internal clocks.
The internal RAM data keeps valid during sleep mode. To wake up the CPU again, an interrupt must
be received from a module (timer/counter, external interrupt pin or other modules). The CPU starts
running at the ROM address, where the interrupt service routine is placed.

Attention : Itis notrecommended to use the SLEEP instruction otherwise then in the SRESET or
$AUTOSLEEP, because it might result in unwanted side effects within other interrupt
routines. If any interrupt is active or pending, the SLEEP instruction will be executed

like a NOP!
Category: interrupt handling / gFORTH macro / assembler instruction
MARCA4 opcode OF hex (SLEEP)
Library implementation: : SAUTOSLEEP
$TIRED: NOP
SLEEP
SET_BCF
BRA_S$TIRED
[EORO]
Stack effect: EXP & RET empty
Stack changes: EXP: not affected
RET: not affected
Flags: SLEEP sets the |_ENABLE flag
CARRY and BRANCH flags are set by $SAUTOSLEEP
XY registers: not affected
Bytes used 4
See also: $RESET, INTO ... INT7, DI, El, RTI

94 01/96

TEMIC

TELEFUNKEN Semiconductors

MARC4 Programmer’s Guide
gFORTH Dictionary

SAUTOSLEEP SLEEP
Example:
: System_Init
Setup_Peripherals
Enable_Keyint \ Enable INT1 for next key input
SLEEP \ Wait for INT1 to happen here
NOP NOP
BEGIN Port5 IN \ Wait until no key pressed
Port5 IN AND Fh =
UNTIL
Choose_Display \ Show software rev.

1 Hz .Set_BaseTimer \setup 1 Hz INT5

01/96

95

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

SRESET

“Dollar-reset”

Purpose:

The power-on-reset colon definition $SRESET is placed at ROM address $008 automatically and is
re-definable by the user. The maximum length of this part in the Zero Page is 56 bytes, when INTO is
used too.

Itis normally used to initialize the two stack pointers, as well as the connected I/O devices, like timer/
counter, LCD and A/D-converter.

An optional SELFTEST is executable on every power-on-reset, if port O is forced to a (customer spe-
cified input value.

Category: Interrupt handling / predefined qFORTH colon definition
Stack effect: EXP stack pointer initialized
RET stack pointer initialized
Stack changes: EXP: empty
RET: empty
Flags: CARRY flag Undefined after power-on reset

BRANCH flag Undefined after power-on reset
|_ ENABLE flagReset by hardware during POR—
Set by the RTI instruction at the end of $SRESET.

XY registers: not affected
Bytes used modified by the customer
See also: $AUTOSLEEP

96 01/96

TEMIC MARC4 Programmer’s Guide
gFORTH Dictionary

SRESET

TELEFUNKEN Semiconductors

Example:

0 CONSTANT port0
FCh 2CONSTANT NoRAM

VARIABLE SO 16 ALLOT (Define expression stack space.)

VARIABLE RO 31 ALLOT (Define RET stack)

: SRESET (Possible $RESET implement. of a customer)
>RP NoRAM (Init RET stack pointer to non-existent memory)
>SP SO (Init EXP stack pointer; above RET stack)
PortO IN 0=
IF
Selftest
THEN

Init_Peripherals
(RTI enable Interrupts, goto SAUTOSLEEP)

01/96 97

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

(comment) \

“Paren”, "Backslash”

Purpose:
Begins a comment, used either in the form

(ccecc) or \ commentis rest of line

The characters “ccccc” delimited by the closing parenthesis are considered a comment and are ig-
nored by the qFORTH compiler. The characters "comment is rest of line” are delimited by the end of
line control character(s).

NOTE: The ” (”and "\ ” characters must be immediately preceded and followed by a blank.
Comments should be used freely for documenting programs. They do not affect the
size of the compiled code.

Category: predefined data structure
Stack effect: EXP (—)
RET (—)
Stack changes: EXP: not affected
RET: not affected
Flags: not affected
XY registers: not affected
Bytes used 0
See also: %

98 01/96

TEMIC MARC4 Programmer’s Guide

TELEFUNKEN Semiconductors gFORTH Dictionary

(comment) \

Example:

: ExampleWord
13 (—13)
DUP (¥***** This is a gFORTH comment *****)
ROT \ This is a comment 'til the end of line.
SWAP (331—313)
3DROP (clean table again.)

(End of ":’—definition)

01/96 99

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

+ ADD

“Plus”

Purpose:
Add the top two 4-bit values and replace them with the 4-bit result on top of the stack.

Category (+) : Arithmetic/logical (single-length)
(ADD): MARC4 mnemonic

MARCA4 opcode 00 hex

Stack effect: EXP (nln2—nl+n2)
RET (—)

Stack changes: EXP: stack depth reduced by 1, new top element.
RET: not affected

Flags: CARRY flag Set on arithmetic overflow (result > 15)
BRANCH flag = CARRY flag

XY registers: not affected

Bytes used 1

See also: D+! 1+! 1-! — +! +C -C

100 01/96

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors gFORTH Dictionary

+ ADD

Example:

VARIABLE Result

: Single—addition

53 + (RPN addition: 5+3:=8)
Result ! (Save result in memory)
3 Result +! (Add 3 to memory location)

01/96 101

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

+!

“Plus—store ”

Purpose:
Adds a 4-bit value to the contents of a 4-bit variable. On entry to the function, the TOS value is the
8-bit RAM address of the variable.

Category: Memory operation (single-length) / gFORTH macro
Library implementation: CODE +! Y! (naddr—n)
[YI@ + (n—n @RAM[Y] —sum)
[Y]! (sum —)
END-CODE

The gFORTH compiler optimizes a word sequence like "5
semaphore +!”into an instruction sequence of the following
form :

[>Y]@ semaphore

ADD [Y]!
Stack effect: EXP (n RAM_addr—)
RET (—)
Stack changes: EXP: 3 elements are popped from the stack
RET: not affected
Flags: CARRY flag: Set on arithmetic overflow (result > 15)
BRANCH flag = CARRY flag
XY registers: The contents of the Y or X register may be changed.
Bytes used 4
See also: + |

102 01/96

TEMIC MARC4 Programmer’s Guide

TELEFUNKEN Semiconductors gFORTH Dictionary

+!
Example:
VARIABLE Ramaddress
: PLUS-STORE
15 Ramaddress ! (15 is stored in the variable)
9 Ramaddress +! (9 is added to this variable)
103

01/96

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

+C ADDC

“Plus—C”

Purpose:
ADD with CARRY of the top two 4-bit values and replace them with the 4-bit result [n1 + n2 +
CARRY] on top of the stack.

Category: (+C): arithmetic/logical (single-length)
(ADDC) : MARC4 mnemonic

MARC4 opcode: 01 hex

Stack effect: EXP (nln2 —nl+n2+CARRY)
RET (—)

Stack changes: EXP: 1 element is popped from the stack

RET: not affected

Flags: CARRY flag: Set on arithmetic overflow (result > 15)
BRANCH flag = CARRY flag

XY registers: not affected

Bytes used: 1

See also: —-C + DAA ADD

104 01/96

TEMIC MARC4 Programmer’s Guide

TELEFUNKEN Semiconductors gFORTH Dictionary
+C ADDC
Examples
: Overflow 10 8 +C; (— 2 ; BRANCH, CARRY flag set)
: PLUS-C
SET _BCF 43 +C (—8;flags: ——)
: D+ \ 8-bit addition using +C (d1 d2 — d1+d2)
ROT +
<ROT +C
SWAP

: ADDC-Example

50 190 D+ (— 240 = FOh ; no CARRY or BRANCH)
PLUS-C
Overflow
2DROP 2DROP (the results.)

01/96 105

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

+LOOP

“Plus—LOOP”

Purpose:

+LOOP terminates a DO loop. Used inside a colon definition in the form DO ... n +LOOP. On each
iteration of the DO loop, +LOOP increments the loop index by n. If the new index is incremented
across the limit (>=), the loop is terminated and the loop control parameters are discarded. Otherwise,
execution returns just after the corresponding DO.

Category: Control structure / gFORTH macro
Library implementation:
CODE +LOOP 2R> (Move Limit & Index on EXP)
ROT + OVER
CMP_LT (Check for Index < Limit)
2>R
(S)BRA _$DO
_$LOOP: DROPR (Skip Limit & Index from RET)
END-CODE
Stack effect: EXP (n—)

IF Index+n < Limit
THEN RET (ulLimit]lndex — u|Limit|Index+n)
ELSE RET (ulLimit|Index —)

Stack changes: EXP: top element is popped from the stack
RET: top entry is popped from the stack, if +LOOP is
terminated
Flags: CARRY and BRANCH flags are affected
XY registers: not affected
Bytes used 10
See also: DO ?DO #DO #LOOP LOOP | J ?LEAVE —-?LEAVE

106 01/96

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors gFORTH Dictionary

+LOOP

Example:

: INCREMENT-COUNT

100 DO
I
2 +LOOP (NOTE: The BRANCH and CARRY flag are)
(altered during execution of +LOOP)
(EXP after execution: —0 2 4 6 8)

01/96 107

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

— SUB

“Minus”

Purpose:
2's complement subtract the top two 4-bit values and replace them with the result [n1 +/n2 + 1] on top
of the stack (/n2 is the 1's complement of n2).

Category: (-): arithmetic/logical (single-length)
(SUB) : MARC4 mnemonic

MARC4 opcode 02 hex

Stack effect: EXP (nln2—nl+n2+1)
RET (—)

Stack changes: EXP: top element is popped from the stack

RET: not affected

Flags: CARRY flag: Set on arithmetic overflow (n1+/n2+1 > 15)
BRANCH flag = CARRY flag

XY registers: not affected

Bytes used 1

See also: —-C SUBB

108 01/96

TEMIC MARC4 Programmer’s Guide

TELEFUNKEN Semiconductors gFORTH Dictionary
Example:

: MINUS 53 - (TOS=2 ;flags: —)

: Underflow 3 5 — (TOS = E; BRANCH, CARRY flag set)

01/96 109

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

—?LEAVE

“Not—Query—Leave”

Purpose:
Conditional exit from within a LOOP structure, if the previous tested condition was FALSE (ie. the
BRANCH flag is RESET). —=?LEAVE is the opposite to ?LEAVE (condition TRUE).

The standard FORTH word sequence NOT IF LEAVE THEN is equivalent to the qFORTH word
—?LEAVE.

—?LEAVE transfers control just beyond the next LOOP, +LOOP or #LOOP or any other loop struc-
ture like BEGIN ... UNTIL, WHILE

Category: Control structure / gFORTH macro

Library implementation:
CODE —?LEAVE TOG_BF (Toggle BRANCH flag setting)
(S)BRA _$LOOP (Exit LOOP if BRANCH flag set)

END-CODE
Stack effect: EXP (—)
RET (—)
Stack changes: EXP: not affected
RET: not affected
Flags: CARRY flag: not affected
BRANCH flag = NOT BRANCH flag
XY registers: not affected
Bytes used 3
See also: DO LOOP +LOOP #LOOP ?LEAVE

110 01/96

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors gFORTH Dictionary

—?LEAVE

Example:

8 CONSTANT Length
7 CONSTANT LSD

Length ARRAY BCD_Number (8 digit BCD value)
: DIGIT+ \ Add digit to n—digit BCD value
Y! (digit n LSD_Addr — digit n)
CLR_BCF (Clear BRANCH and CARRY flag)
#DO (Use length as loop index)
[Yl@ +C DAA (n— m+n [BRANCH set on overflow])
[Y-]' O (m—0)
—?LEAVE (Finish loop, if NO overflow)
#LOOP (Decrement index & repeat if >0)
DROP
: Add8
BCD_Number Length ERASE (clear the array)

8 Length BCD_Number [LSD] Digit+

01/96 111

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

—C SUBB

“Minus—-C”

Purpose:

Subtract with BORROW [= NO CARRY oder /CARRY] 1's complement of the top two 4-bit values
and replace them with the 4-bit result [= n1+/n2+/CARRY] on top of the stack (/n2 is the inverse bit
pattern [1's complement] of n2).

Category: (=C) : arithmetic/logical (single-length)
(SUBB) : MARC4 mnemonic

MARC4 opcode 03 hex

Stack effect: EXP (nln2 —nl+/n2+/CARRY)
RET (—)

Stack changes: EXP: top element is popped from the stack

RET: not affect

Flags: CARRY flag: Set on arithmetic underflow
(n1+/n2+/CARRY > 15)
BRANCH flag = CARRY flag

XY registers: not affected
Bytes used: 1
See also: SUB TCS DAA - +C

112 01/96

TEMIC

TELEFUNKEN Semiconductors

MARC4 Programmer’s Guide
gFORTH Dictionary

—C

SUBE

Example:

: DNEGATE \ Two’s complement of top byte
0 - SWAP
0 -C SWAP

(d1——d1)

01/96

113

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

0..Fh(15) LITO..LITF

“Literal”

Purpose:
PUSH the LITeral <n> (0...15) onto the expression stack.

Category: Stack operation / assembler instruction
MARC4 opcode 60 ... 6F hex
Stack effect: EXP (—n) <n=0.Fh>
RET (—)
Stack changes: EXP: one element is pushed onto the stack.

RET: not affected

Flags: not affected

XY registers: not affected

Bytes used: 1

See also: CONSTANT 2CONSTANT

114 01/96

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors gFORTH Dictionary

0..Fh(15) LT O..LITF

Example:

: LITERAL—example

LIT_A (is equivalent to A hex or 10 decimal)
LIT_O (is equivalent to O decimal)
+ (results in the LIT_A remaining on the TOS)
DROP (drop the result.)
(better used for above sequence :)

Ah 0 + DROP

21h ABh (—21—21AB)
D+ 2DROP (21AB—CC—)
12 1 + DROP (C—C1—D—)

01/96 115

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

O<>

"Zero—not—equal”
Purpose:
Compares the 4-bit value on top of the stack to zero.

Ifthe value on the stack is not zero, then the BRANCH flag is set in the condition code register (CCR).
Unlike standard FORTH, whereby a BOOLEAN value (0 or 1), depending on the comparison result,
is pushed onto the stack.

Category: Comparison (single-length) / gFORTH macro

Library implementation: = CODE 0<>
0 CMP_NE DROP

END-CODE
Stack effect: EXP (n—)
RET (—)
Stack changes: EXP: top element is popped from the stack
RET: not affected
Flags: CARRY flag: affected
BRANCH flag: set, if (TOS <> 0)
XY registers: not affected
Bytes used: 3
See also: 0= DO= DO<>

116 01/96

TEMIC MARC4 Programmer’s Guide

TELEFUNKEN Semiconductors

gFORTH Dictionary

Oo<>

Example:

: NOT-EQUALS-ZERO

56 (—65
0<> (56 —5; BRANCH flag SET
DROP 0 (5—0

0= (0 — ; BRANCH flag SET

01/96

117

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

0=

“Zero—equal”
Purpose:
Compares the 4-bit value on top of the stack to zero.

If the value on the stack is equal to zero, then the BRANCH flag is set in the condition code register.
Unlike standard FORTH, whereby a BOOLEAN value (0 or 1), depending on the comparison result,
is pushed onto the stack.

Category: Comparison (single-length) / gFORTH macro

Library implementation: = CODE 0=
0 CMP_EQ DROP

END-CODE
Stack effect: EXP (n—)
RET (—)
Stack changes: EXP: top element is popped from the stack
RET: not affected
Flags: CARRY flag: affected
BRANCH flag: set, if (TOS = 0)
XY registers: not affected
Bytes used: 3
See also: DO= DO<> 0<>

118 01/96

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors gFORTH Dictionary

0=

Example:

: ZERO-EQUALS

56 (—65)

0<> (56 —5; BRANCH flag SET)
DROP 0 (5—0)
0= (0— ;BRANCH flag SET)

01/96 119

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

1+ INC

“One—plus”
Purpose:
Increments the 4-bit value on top of the stack (TOS) by 1.
Category (1+): Arithmetic/logical (single-length)
(INC): MARC4 mnemonic
MARCA4 opcode: 14 hex
Stack effect: EXP (n—n+l)
RET (—)
Stack changes: EXP: not affected
RET: not affected
Flags: CARRY flag: not affected
BRANCH flag: set, if (TOS = 0)
XY registers: not affected
Bytes used: 1
See also: 1- 1+!

120 01/96

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors gFORTH Dictionary

1+ INC

Example:

VARIABLE PresetValue
VARIABLE Switch

: DownCounter (PresetValue —)
BEGIN 1- (n—n-1)
UNTIL DROP

: UpCounter (PresetValue —)
BEGIN 1+ (n—n+l)
UNTIL DROP

: SelectDirection
9 PresetValue !
0 Switch !
BEGIN
PresetValue @
Switch 1 TOGGLE (Toggle between 1 <—>0)
IF DownCounter
ELSE UpCounter
THEN
PresetValue 1-!
UNTIL

01/96 121

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

1+

“One—plus-store”

Purpose:
Increments the 4-bit contents of a specified memory location. 1+! requires the address of the variable

on top of the stack.
Category: Memory operation (single-length) / gqFORTH macro

Library implementation:. @ CODE 1+!
Y! [Y]@ 1+ [Y]' (increment variable by 1)

END-CODE
Stack effect: EXP (addr—)
RET (—)
Stack changes: EXP: 2 elements are popped from the stack

RET: not affected

Flags: CARRY flag: not affected
BRANCH flag: set, if (TOS = 0)

XY registers: The address is stored into the Y or X register, then the value is
fetched from RAM, the value is incremented on the stack and
restored in the address indicated by the Y (or X) register.

Bytes used: 4

See also: +1 11

122 01/96

TEMIC MARC4 Programmer’s Guide

TELEFUNKEN Semiconductors gFORTH Dictionary

1+

Example:

VARIABLE State

: StateCounter
5 State ! (store 5 in the memory location)
6 0DO (set loop index = 6)
State 1+! (increment contents of variable 'State’)
LOOP

01/96 123

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

1- DEC

“One—minus”
Purpose:
Decrements the 4-bit value on top of the stack (TOS) by 1.
Category (1-): Arithmetic/logical (single-length)
(DEC): MARC4 mnemonic
MARCA4 opcode 15 hex
Stack effect: EXP (n—n-1)
RET (—)
Stack changes: EXP: not affected
RET: not affected
Flags: CARRY flag not affected
BRANCH flag Set, if (TOS =0)
XY registers: not affected
Bytes used: 1
See also: 1+ 1-!

124 01/96

TEMIC

MARC4 Programmer’s Guide
gFORTH Dictionary

TELEFUNKEN Semiconductors

1—

DEC

Example:

VARIABLE PresetValue

VARIABLE Switch

: DownCounter
BEGIN 1-
UNTIL DROP

: UpCounter
BEGIN 1+
UNTIL DROP

: SelectDirection
9 PresetValue !
0 Switch !
BEGIN
PresetValue @
Switch 1 TOGGLE
IF DownCounter
ELSE UpCounter
THEN
PresetValue 1-!
UNTIL

(PresetValue —
(n—n-1

(PresetValue —
(n—n+1

(Toggle between 1 <—>0

(UNTIL PresetValue =0

)

)

01/96

125

A K4

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

1-1

“One—minus—store”

Purpose:
Decrements the 4-bit contents of a specified memory location. 1-! requires the address of the
variable on top of the stack.

Category: Memory operation (single-length) / gqFORTH macro

Library implementation: @~ CODE 1-!
Y! [Y|@ 1- [Y]! (decrement variable by 1)

END-CODE
Stack effect: EXP (addr—)
RET (—)
Stack changes: EXP: 2 elements are popped from the stack

RET: not affected

Flags: CARRY flag: not affected
BRANCH flag: set, if (TOS = 0)

XY registers: The address is stored into the Y (or X) register, then the value is
fetched from RAM , the value is decremented on the stack and
re-stored in the address indicated by the Y (or X) register.

Bytes used: 4

See also: +1 1+ |

126 01/96

TEMIC

TELEFUNKEN Semiconductors

MARC4 Programmer’s Guide
gFORTH Dictionary

1-1
Example:
VARIABLE PresetValue
VARIABLE Switch
: DownCounter (PresetValue —)
BEGIN 1- UNTIL DROP ; (n—n-1)
: UpCounter (PresetValue —)
BEGIN 1+ UNTIL DROP; (n—n+1)
: SelectDirection
9 PresetValue !
0 Switch !
BEGIN
PresetValue @
Switch 1 TOGGLE (Toggle between 1 <—>0)
IF DownCounter ELSE UpCounter THEN
PresetValue 1-! (UNTIL PresetValue =0)
UNTIL
127

01/96

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

2!

“Two-store”

Purpose:
Stores the 8-bit value on TOS into an 8-bit variable in RAM. The address of the variable is the TOS

value.

Category: Arithmetic/logical (double-length) / gFORTH macro
Library implementation: CODE 2! Y! (nh nladdr — nh nl)
SWAP (nh nl —nl nh)
[Y]! (nlnh—nl)
[+Y]! (nl—)
END-CODE
Stack effect: EXP (n_hn_IRAM addr—)
RET (—)
Stack changes: EXP: 4 elements are popped from the stack
RET: not affected
Flags: not affected
XY registers: The contents of the Y or X register may be changed.
Bytes used: 4
See also: 2@ D+! D-!

128 01/96

TEMIC

TELEFUNKEN Semiconductors

MARC4 Programmer’s Guide

gFORTH Dictionary

2!
Example 1:
: D-STORE
13h 43h 2! (RAM [43]=1; RAM [44] =3)
; (' but normally variable names are used !)
Example 2:
2VARIABLE Counter
: DoubleCount
0 O Counter 2! (initialize the 8-bit counter)
BEGIN
0 1 Counter D+! (increment the 8-bit counter
Counter 2@ 20h D= (‘until 20h is reached ...
UNTIL
01/96 129

MARC4 Programmer’s Guide
gFORTH Dictionary

TEMIC

TELEFUNKEN Semiconductors

2% SHL

“Two—multiply”

Purpose:

Multiplies the 4-bit value on top of the stack by 2. SHL shifts TOS left into CARRY flag.

Category:

MARC4 opcode

Library implementation:

Stack effect:

Stack changes:

Flags:

XY registers:

Bytes used:

See also:

TOS

<—| 321]]0]|<—]0

(2*) : Arithmetic/logical (single-length) / gFORTH macro

(SHL) : MARC4 mnemonic / assembler instruction
10 hex (SHL)
CODE 2* SHL END-CODE

EXP (n—n*2)
RET (—)

EXP: not affected
RET: not affected

CARRY flag: MSB of TOS is shifted into CARRY
BRANCH flag = CARRY flag

not affected
1

ROL ROR SHR 2/ D2* D2/

130

01/96

TEMIC

TELEFUNKEN Semiconductors

MARC4 Programmer’s Guide
gFORTH Dictionary

2* SHL
Example 1:
: MULT-BY-TWO (multiply a 4-bit number:)
7 2% (7h—Eh)

(multiply a 8-bit number: 'D2* Macro :)
18h SHL SWAP (18h — 0 1h [CARRY flag set])
ROL SWAP (0 1h [CARRY] — 30h)

(18h*2=30h !use ’'D2* !)

Example 2:

: BitShift
SET_BCF 3 (3=0011b)
ROR DROP ([CARRY] 3 — [CARRY] 9 = 1001b)
CLR_BCF 3 (3=0011b)
ROR DROP ([no CARRY] 3 — [CARRY] 1 =0001b)
SET_BCF 3 (3 =0011b)
ROL DROP ([CARRY] 3 — [no CARRY] 7 = 0111b)
CLR_BCF 3 (3=0011b)
ROL DROP ([no CARRY] 3 — [no CARRY] 6 = 0110b)
CLR_BCF Fh
2/ DROP (-SHR—[no CARRY] F — [CARRY] 7 =0111b)
CLR_BCF 6 (6 =0110b)
2* DROP (~ SHL — [no CARRY] 6 — [no C] C = 1100b)

01/96

131

MARC4 Programmer’s Guide
gFORTH Dictionary

TEMIC

TELEFUNKEN Semiconductors

2/ SHR

“Two—divide”

Purpose:

Divides the 4-bit value on top of the stack by 2. SHR shifts TOS right into CARRY flag.

Category:

MARC4 opcode

Library implementation:

Stack effect:

Stack changes:

Flags:

XY registers:

Bytes used:

See also:

TOS

—>\| 3 2 1 0

(2/) : arithmetic/logical (single-length) / gFORTH macro
(SHR) : MARC4 mnemonic / assembler instruction

12 hex (SHR)
CODE 2/ SHR END-CODE

EXP (n—n/2)
RET (—)

EXP: not affected
RET: not affected

CARRY flag: LSB of TOS is shifted into CARRY
BRANCH flag = CARRY flag

not affected
1

2* SHL D2* D2/ ROR ROL

132

01/96

TEMIC MARC4 Programmer’s Guide

TELEFUNKEN Semiconductors

gFORTH Dictionary

2/

SHF

g

Example:

: TWO-DIVIDE
10 2/ (10—5
(divide an 8-bit number: 'D2/* Macro :
30h SWAP SHR (30h — 0 1h [CARRY flag set]
SWAP ROR (0 1 [CARRY]— 18h
(30h/2=18h !use’'D2/!

For another example see '2*', 'SHL'.

01/96

133

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

2<ROT

“Two-left-rote”

Purpose:
Moves the top 8-bit value to the third byte position on the EXP stack, ie. performs an 8-bit left rotate.
Category: Stack operation (double-length) / qFORTH colon definition
Library implementation: : 2<ROT
ROT >R (d1d2d3—d1d2hd3)
ROT >R (d1d2h d3 — d1d3)
ROT >R (d1d3 —dihd3)
ROT R> (dlh d3 —d3d1)
R> R> (d3dl1—d3d1d2)
Stack effect: EXP (d1d2d3—d3d1d2)
RET (—)
Stack changes: EXP: affected (changed order of elements)

RET: use of 3 RET levels in between

Flags: not affected

XY registers: not affected

Bytes used: 14

See also: ROT <ROT 2ROT

134 01/96

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors gFORTH Dictionary

2<ROT

Example:

: TWO-LEFT-ROT

11h 22h 33h (— 11h 22h 33h)
2<ROT (11h 22h 33h — 33h 11h 22h)
ROT (33h 11h 22h — 33h 12h 21h)

01/96 135

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

2>R

“Two-to-R”

Purpose:
Moves the top two 4-bit values from the expression stack and pushes them onto the top of the return

stack.

2>R pops the EXP stack onto the RET stack. To avoid corrupting the RET stack and crashing the
system, each use of 2>R MUST be followed by a subsequent 2R> (or an equivalent 2R@ and
DROPR) within the same colon definition.

Category: Stack operation (double-length) / assembler instruction
MARC4 opcode 28 hex
Stack effect: EXP (n1n2—)
RET (—u|n2|nl)
Stack changes: EXP: 2 elements are popped from the stack
RET: 1 (8-bit) entry is pushed onto the stack
Flags: not affected
XY registers: not affected
Bytes used: 1
See also: I>RR> 2R@ 2R> 3R@ 3>R 3R>

136 01/96

TEMIC

MARC4 Programmer’s Guide

TELEFUNKEN Semiconductors gFORTH Dictionary
2>R
Example:
: 2SWAP (Swap 2nd byte with top)
>R <ROT (d1d2—n2_hdl)
R> <ROT (n2_hdl—d2d1)
: 20VER (Duplicate 2nd byte onto top)
2>R (did2—d1)
2DUP (dl1—d1d1)
2R> (didl—d1d1d2)

2SWAP (d1dld2—d1d2d1)

01/96 137

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

2@

“Two-fetch”

Purpose:
Copies the 8-bit value of a 2VARIABLE or 2ARRAY element to the stack. The MSN address of the

selected variable is the TOS value.

Category: Arithmetic/logical (double-length) / gFORTH macro
Library implementation: @ CODE 2@ Y! (addr —)
[Y]@ (—nh)
[+Y]@ (nh—nhnl)
END-CODE
Stack effect: EXP (RAM_addr—n_hn_l)
RET (—)
Stack changes: EXP: The top two elements will be changed.
RET: not affected
Flags: not affected
XY registers: The contents of the Y or X register may be changed.
Bytes used: 3
See also: Other byte (double-length) qFORTH dictionary words,
like
D- D+ 2! D+! D-! D2/ D2* D< D> D<> D= D<= D>=
DO= DO<>

138 01/96

TEMIC

MARC4 Programmer’s Guide

TELEFUNKEN Semiconductors

gFORTH Dictionary

2@

Example 1:

StoreFetch
13h 43h 2!

43h 2@
2DROP

Example 2:

2VARIABLE Counter

: DoubleCount
0 0 Counter 2!
BEGIN
0 1 Counter D+!
Counter 2@ 20h D=
UNTIL

(RAM[43]=1; RAM [44] =3
(use var name instead of address
(—13

(initialize the 8-bit counter

(increment the 8-bit counter
(‘until 20h is reached ...

01/96

139

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

2ARRAY

“Two-ARRAY”

Purpose:
Allocates RAM memory for storage of a short double-length (8-bit / byte) array, using a 4-bit array
index value. Therefore the number of 8-bit array elements is limited to 16.

The qFORTH syntax is as follows:
<number> 2ARRAY <identifier> [AT <RAM-Addr>]

At compile time, 2ARRAY adds <identifier> to the dictionary and ALLOTs memory for storage of
<number> double-length values. At execution time, <identifier> leaves the RAM start address of the
parameter field (<identifier> [0]) on the expression stack.

The storage area allocated by 2ARRAY is not initialized.

Category: Predefined data structure
Stack effect: EXP (—)
RET (—)
Stack changes: EXP: not affected
RET: not affected
Flags: not affected
XY registers: not affected
Bytes used: 0
See also: ARRAY LARRAY 2LARRAY 2VARIABLE VARIABLE

140 01/96

TEMIC

TELEFUNKEN Semiconductors

MARC4 Programmer’s Guide
gFORTH Dictionary

2ARRAY

Example:

6 2ARRAY RawData
3 CONSTANT STEP
. Init_RawData
15h 6 0 DO
2DUP
| RawData INDEX 2!
STEP M-
LOOP
2DROP

: Setup_RAM
Init_RawData
RawData [3] 2@
50h D+

(RawData[0] ... RawData[5]

(RawData[0] := 15h
(RawData[l] := 12h
(RawData[2] := OFh
(RawData[3] := 0Ch
(RawData[4] := 09h
(RawData[5] := 06h

)

01/96

141

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

2CONSTANT

“Two-CONSTANT”

Purpose:
Creates a double-length (8-bit) constant definition. The gFORTH syntax is as follows:
<byte constant> 2CONSTANT <identifier>

which assigns the 8—bit value <byte_constant> to <identifier>.

Category: Predefined data structure

Stack effect: EXP (—d) atexecution time
RET (—)

Stack changes: EXP: not affected
RET: not affected

Flags: not affected

XY registers: not affected

Bytes used: 0

See also: ARRAY, CONSTANT

142 01/96

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors gFORTH Dictionary

2CONSTANT

Example:

00h 2CONSTANT ZERODb (define byte constants)

01h 2CONSTANT ONEDb

: Emit_HexByte \ Emit routine EXP: (nl n2 —)
2DUP 3 OUT (Duplicate & emit lower nibble)
SWAP 2 OUT
SWAP

: FIBONACCI (Display 12 FIBONACCI nrs.)
ZEROb ONEb (Set up for calculations
12 0 DO (Set up loop — 12 numbers

Emit_HexByte (Emit top 8-bit number
2SWAP 20VER (Switch for addition

~ — — ~—

D+ (Add top two 8-bit numbers
LOOP (Go back for next number
Emit_HexByte (Emit last number too)
2DROP 2DROP (Clean up the stack)

01/96 143

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

2DROP

“Two-DROP”

Purpose:
Removes one double-length (8-bit) value or two single-length (4-bit) values from the expression
stack.

Category: Stack operation (double-length) / qFORTH macro
Library implementation: = CODE 2DROP
DROP DROP
END-CODE
Stack effect: EXP (nl1n2—)
RET (—)
Stack changes: EXP: 2 elements are popped from the stack
RET: not affected
Flags: not affected
XY registers: not affected
Bytes used: 2
See also: DROP 3DROP

144 01/96

TEMIC MARC4 Programmer’s Guide

TELEFUNKEN Semiconductors gFORTH Dictionary
Example:
: TWO-DROP (Simple example for 2DROP)

19H 11H (—19h11h)

2DROP (19h 11h — 19h)

01/96 145

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

2DUP

“Two-doop”

Purpose:
Duplicates the double-length (8-bit) value on top of the expression stack.

Category: Stack operation (double-length) / gFORTH macro
Library implementation: = CODE 2DUP
OVER OVER
END-CODE
Stack effect: EXP (d—dd)
RET (—)
Stack changes: EXP: top 2 elements are pushed again onto the stack

RET: not affected

Flags: not affected
XY registers: not affected
Bytes used: 2

See also: DUP 3DUP

146 01/96

TEMIC MARC4 Programmer’s Guide

TELEFUNKEN Semiconductors

gFORTH Dictionary

2DUP

Example:

2VARIABLE CounterValue (8-bit counter value

: Update_Byte (addr — current value
2DUP (addr — addr addr
2@ 2SWAP (addr addr — d addr
18 2SWAP (d addr—d 18 addr
D+! (d 18 addr—d
: Task 5

CounterValue Update_Byte (—d)
3 OUT 2 OUT

~—

01/96

147

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

2LARRAY

“Two-long-ARRAY”

Purpose:
Allocates RAM space for storage of a double-length (8-bit) long array, which has an 8-bit index to
access the 8-bit array elements (more than 16 elements).

The qFORTH syntax is as follows
<number> 2LARRAY <identifier> [AT <RAM address> |

At compile time, 2LARRAY adds <identifier> to the dictionary and ALLOTs memory for storage of
<number> double-length values. At execution time, <identifier> leaves the RAM start address of the
array (<identifier> [0]) on the expression stack. The storage area ALLOTed by 2LARRAY is not
initialized.

Category: Predefined data structure
Stack effect: EXP (—)
RET (—)
Stack changes: EXP: not affected
RET: not affected
Flags: not affected
XY registers: not affected
Bytes used: 0
See also: ARRAY 2ARRAY LARRAY

148 01/96

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors gFORTH Dictionary

2LARRAY

Example:

25 2LARRAY VarText
20 2CONSTANT StrLength
ROMCONST FixedText StrLength, ” Long string example ",

: TD— D-IF ROT 1- <ROT THEN ; (subtract 8 from 12-bit.)
: TD+ D+ IF ROT 1+ <ROT THEN ; (add 8-bit to a 12-bit value.)
: ROM_Byte@
3>R 3R@ TABLE ;; (keep ROMaddr on EXP; fetch char.)
: CopyString (copy string from ROM into RAM array)
FixedText ROM_Byte@ (get string length.)
2>R (move length/index to return stack)
2R@ TD+ (length + start addr=ROMaddr [lastchar])
BEGIN ()
ROM_Byte@ (get ASCII char)
2R>1 M- 2>R (index :=index — 1)
2R@ VarText INDEX 2! (store char in array.)
01TD- (ROMaddr := ROMaddr — 1)
2R@ DO= (index=07?)
UNTIL ()
DROPR 3DROP (skip count & ROMaddr.)

01/96 149

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

2NIP

“Two-NIP”
Purpose:
Removes the second double-length (8-bit) value from the expression stack.
Category: Stack operation (double-length) / gqFORTH macro
Library implementation: = CODE 2NIP
ROT DROP
ROT DROP
END-CODE
Stack effect: EXP (d1d2—d2)
RET (—)
Stack changes: EXP: 2 elements are popped from the stack
RET: not affected
Flags: not affected
XY registers: not affected
Bytes used: 4
See also: NIP SWAP DROP

150 01/96

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors gFORTH Dictionary

2NIP

Example:

: Cancel-2nd—Byte
9 25 5Ah (— 9 19h 5Ah)
2NIP (9 19h 5Ah — 9 5Ah)

01/96 151

MARCA4 Programmer’s Guide TE MIC

gFORTH Dictionary TELEFUNKEN Semiconductors
“Two-OVER”
Purpose:
Copies the second double length (8-bit) value onto the top of the expression stack.
Category: Stack operation (double-length) / gqFORTH colon definition
Library implementation: : 20VER

2>R (dl1d2 —d1)

2DUP (dl1—d1d1)

2R> (dlidl—dldid2)

2SWAP (d1dld2 —dld2d1)

Stack effect: EXP (d1d2—dld2dl)
RET (—)
Stack changes: EXP: 2 elements are pushed onto the stack

RET: 3 levels are used in between

Flags: not affected

XY registers: not affected

Bytes used: 8

See also: 2DUP 2SWAP OVER

152 01/96

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors gFORTH Dictionary

20VER

Example:

: Double-2nd-Byte
12H 19H (— 12h 1%9h)
20VER (12h 19h —12h 19h 12h)

01/96 153

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

2R>

“Two-R-from”

Purpose:
Moves the double length (8-bit) value from the return stack onto the expression stack. 2R@, 2R>and
2>R allow use of the return stack as a temporary storage for 8-bit values.

2R>removes elements from the return stack onto the expression stack. To avoid corrupting the return
stack and crashing the program, each use of 2R> MUST be preceded by a 2>R within the same colon
definition.

Category: Stack operation (double-length) / gqFORTH macro
Library implementation: = CODE 2R>
2R@ DROPR
END-CODE
Stack effect: EXP (—nln2)

RET (u|n2|n1 —)

Stack changes: EXP: 2 elements are pushed onto the stack
RET: 1 (8-bit) entry is popped from the stack

Flags: not affected

XY registers: not affected

Bytes used: 2

See also: I>RR> 2R@ 2>R 3R@ 3>R 3R>

154 01/96

TEMIC

MARC4 Programmer’s Guide

TELEFUNKEN Semiconductors

gFORTH Dictionary

2R>

Example 1:

Library implementation:

CODE +LOOP
2R>
ROT + OVER
CMP_LT
2>R
(S)BRA _$DO
_$LOOP: DROPR
END—CODE

Example 2:

: 20VER
2>R
2DUP
2R>
2SWAP

of +LOOP:

(Move limit & index on EXP

(Check for index < limit

(Skip limit & index from RET

(Duplicate 2nd byte onto top
(did2 —d1

(dl1—d1d1
(dl1dl—dld1d2
(dildld2—di1d2d1

01/96

155

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

2R@

“Two-R-fetch”

Purpose:
Takes a copy of the 8-bit value on top of the return stack and pushes the double length (8-bit) value on
the expression stack.

2R@, 2R> and 2>R allow use of the return stack as a temporary storage for 8-bit values.

Category: Stack operation (double-length) / assembler instruction
MARC4 opcode 2A hex
Stack effect: EXP (—nln2)

RET (u|n1|n2 — u|n1|n2)

Stack changes: EXP: 2 elements are pushed onto the stack
RET: not affected

Flags: not affected

XY registers: not affected

Bytes used: 1

See also: | >R R> 2>R 2R> 3R@ 3>R 3R>

156 01/96

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors gFORTH Dictionary

2R@

Example:

: 20VER (Duplicate 2nd byte onto top)
2>R (d1d2—d1)
2DUP (d1—d1d1l)
2R@ DROPR (d1dl—d1d1ld2)
2SWAP (d1dl1d2—dld2d1l)

01/96 157

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

2ROT

“Two-rote”
Purpose:
Moves the third double length (8-bit) value onto the top of the expression stack.
Category: Stack operation (double-length) / gqFORTH macro definition
Library implementation: = CODE 2ROT
2>R 2SWAP (d1d2d3—d2d1l)
2R> 2SWAP (d2d1—d2d3d1)
END-CODE
Stack effect: EXP (d1d2d3—d2d3dl)
RET (—)
Stack changes: EXP: affected (changes order of elements)
RET: affected (3 levels are used in betweeen)
Flags: not affected
XY registers: not affected
Bytes used: 5-7
See also: 2<ROT <ROT ROT

158 01/96

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors gFORTH Dictionary

2ROT

Example:

. Rotate—Byte—to—Top
11h 22h 33h (—11h 22h 33h)
2ROT (11h 22h 33h — 22h 33h 11h)

01/96 159

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

2SWAP

“Two-SWAP”
Purpose:
Exchanges the top two double-length (8-bit) values on the expression stack.
Category: Stack operation (double-length) / gqFORTH colon definition
Library implementation: : 2SWAP
>R <ROT (d1d2—d2hdl)
R> <ROT (d2hdl1—d2d1)
Stack effect: EXP (d1d2—d2dl)
RET (—)
Stack changes: EXP: affected (changes order of elements)
RET: affected (1 level is used intermediately)
Flags: not affected
XY registers: not affected
Bytes used: 8
See also: SWAP

160 01/96

TEMIC MARC4 Programmer’s Guide

TELEFUNKEN Semiconductors gFORTH Dictionary
Example:
: Swap—Bytes

3 12h 19h (—312h19%h)

2SWAP (312h19h—319h 12h)

01/96 161

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

2TUCK

“Two-TUCK”

Purpose:
Tucks the top 8-bit (double-length) value under the second byte on the expression stack, the counter-

part to 20VER.

Category: Stack operation (double-length) / gFORTH colon definition
Library implementation: : 2TUCK

3>R (nln2n3n4 —nl)

2R@ (n1—nln3n4d)

ROT (n1n3n4—n3n4nl)
3R> (n3n4nl—n3n4dnln2n3nd)
(n3nd4nln2n3n4d —d2dld2)

Stack effect: EXP (d1d2—d2d1d2)
RET (—)

Stack changes: EXP: Two 4-bit elements are pushed under the 2nd byte
RET: affected (1 level is used intermediately)

Flags: not affected

XY registers: not affected

Bytes used: 6

See also: TUCK 20VER

162 01/96

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors gFORTH Dictionary

2TUCK

Example:

: Tuck—under—2nd—-Byte
11H 22H (— 11h 22h)
2TUCK (11h 22h — 22h 11h 22h)

01/96 163

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

2VARIABLE

“Two-VARIABLE”
Purpose:
Allocates RAM space for storage of one double-length (8-bit) value.
The qFORTH syntax is as follows
2VARIABLE <name> [AT <address.>] [<number> ALLOT]

At compile time, 2VARIABLE adds <name> to the dictionary and ALLOTs memory for storage of
one double-length value. If AT <address> is appended, the variable/s will be placed at a specific ad-
dress (i.e.:’AT 40h’). If <number> ALLOT is appended, atotal of 2 * (<number> + 1) 4-bit memory
locations will be allocated. At execution time, <name> leaves the start address of the parameter field
on the expression stack.

The storage area allocated by 2VARIABLE is not initialized.

Category: Predefined data structure
Stack effect: EXP (—d) atexecution time
RET (—)
Stack changes: EXP: not affected
RET: not affected
Flags: not affected
XY registers: not affected
Bytes used: 0
See also: ALLOT VARIABLE 2ARRAY ARRAY

164 01/96

TEMIC

TELEFUNKEN Semiconductors

MARC4 Programmer’s Guide
gFORTH Dictionary

Example:

2VARIABLE NoKeyCounter (8-bit variable)

: No_KeyPressed
0 0 NoKeyCounter 2! (initialise to $00)
NoKeyCounter 2@ 1 M+ (increment by 1)
IF NoKeyOver THEN ('call’ NoKeyOver on overflow)
NoKeyCounter 2! (store the result back)

01/96

165

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

3!

“Three-store”

Purpose:
Store the top 3 nibbles into a 12-bit variable in RAM. The most significant digit address of that array

has to be the TOS value.

Category: Memory operation (triple-length) / gqFORTH colon definition
Library implementation: : 3! Y! (nh nm nl addr — nh nm nl)
SWAP ROT (nh nm nl — nl nm nh)
[Y] [+Y]! (nlnm nh —nl)
[+Y]! (nl—)
Stack effect: EXP (nhnmnladdr—)
RET (—)
Stack changes: EXP: 5 element are popped from the stack
RET: not affected
Flags: not affected
XY registers: The contents of the Y register will be changed.
Bytes used: 7
See also: 3@ T+ T-! TD+! TD-!

166 01/96

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors gFORTH Dictionary

3!

Example:

3 ARRAY 3Nibbles AT 40h (3 nibbles at fixed locations.)

: Triples
123h 3Nibbles 3! (store 123h in the 3 nibbles array.)
321h 3Nibbles T+! (123h + 321h = 444h)
3Nibbles 3@ 3DROP (fetch the result onto expression stack .)

123h 3Nibbles T-! (444h — 123h = 321h)

01/96 167

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

3>R

“Three-to-R”

Purpose:

Removes the top 3 values from the expression stack and places them onto the return stack. 3>R un-
loads the EXP stack onto the RET stack. To avoid corrupting the RET stack and crashing the system,
each use of 3>R MUST be followed by a subsequent 3R> within the same colon definition.

Category: Stack operation (triple-length) / assembler instruction
MARC4 opcode 29 hex
Stack effect: EXP (n1ln2n3 —)
RET (—n3|n2|nl)
Stack changes: EXP: 3 elements are popped from the top of the stack

RET: 1 entry (3 elements) is pushed onto the stack

Flags: not affected

XY registers: not affected

Bytes used: 1

See also: | >R R> 2R@ 2>R 2R> 3R@ 3R>

168 01/96

TEMIC

MARC4 Programmer’s Guide

TELEFUNKEN Semiconductors gFORTH Dictionary
3>R

Example:
: 2TUCK \ TUCK top 8-bit value under the 2nd byte

3>R (nln2n3n4 —nl)

2R@ (nl—n1n3nd)

ROT (n1n3n4 —n3nd4dnl)

3R> (n3n4nl—n3n4nln2n3n4)

(dld2 —d2d1d2)

01/96 169

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

3@

“Three-fetch”

Purpose:
Fetch an 12-bit variable in RAM and push it on the expression stack. The most significant digit ad-

dress of the variable must be on TOS.

Category: Memory operation (triple-length) / gqFORTH macro
Library implementation: @ CODE 3@ ! (addr —)
[Yl@ (—nh)
[tY]@ (nh—nh nm)
[+tY]@ (nhnm—nhnmnl)
END-CODE
Stack effect: EXP (addr—nhnmnl)
RET (—)
Stack changes: EXP: 2 elements are popped from and 3 are pushed onto

the expression stack.
RET: not affected

Flags: not affected

XY registers: The contents of the Y or X register may be changed.
Bytes used: 5

See also: 31 T+ T=!

170 01/96

TEMIC

MARC4 Programmer’s Guide

TELEFUNKEN Semiconductors gFORTH Dictionary

3@

Example:

3 ARRAY 3Nibbles AT 40h (3 nibbles at fixed locations in RAM)

: Triples
123h 3Nibbles 3!
321h 3Nibbles T+!
3Nibbles 3@ 3DROP
123h 3Nibbles T-!
3Nibbles 3@ 3DROP

(store 123h in the 3 nibbles array.)
(123h + 321h = 444h)

(fetch the result onto expression stack.)
(444h —123h = 321h)

(fetch the result onto expression stack.)

01/96

171

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

3DROP

“Three-DROP”

Purpose:

Removes one 12-bit or three 4-bit values from the expression stack.
Category: Stack operation (triple—length) / gFORTH macro

Library implementation: =~ CODE 3DROP
DROP DROP DROP

END-CODE
Stack effect: EXP (n1ln2n3—)
RET (—)
Stack changes: EXP: 3 elements are popped from the stack

RET: not affected

Flags: not affected

XY registers: not affected

Bytes used: 3

See also: DROP 2DROP DROPR

172 01/96

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors gFORTH Dictionary

3DROP

Example:

. Skip—top—3—nibbles
3467 (—3467)
3DROP (3467—3)

01/96 173

MARCA4 Programmer’s Guide TE MIC

gFORTH Dictionary

TELEFUNKEN Semiconductors

3DUP

“Three-doop”

Purpose:

Duplicates the 12-bit address value on top of the expression stack.

Category:

Library implementation:

Stack effect:

Stack changes:

Flags:
XY registers:
Bytes used:

See also:

Stack operation (triple-length) / qFORTH colon definition

CODE 3DUP

3>R 3R@ 3R> (t—tt)
END-CODE
EXP (nln2n3—nl1ln2n3nln2n3)
RET (—)

EXP: 3 elements are pushed onto the stack
RET: affected (1 level is used intermediately)

not affected
not affected
4

DUP 2DUP

174

01/96

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors gFORTH Dictionary

3DUP

Example:

ROMCONST Message 5,” Error 7,

: Duplicate—ROMaddr

Message 3DUP (duplicate ROM address on stack)
ROMByte @ (fetch string length)
NIP (get string length as 4-bit value)

01/96 175

MARC4 Programmer’s Guide
gFORTH Dictionary

TEMIC

TELEFUNKEN Semiconductors

3R>

“Three-R-from”

Purpose:

Moves the top 3 nibbles from the return stack and puts them onto the expression stack. 3R> unloads
the return stack onto the expression stack. To avoid corrupting the return stack and crashing the
system, each use of 3R> MUST be preceded by a 3>R within the same colon definition.

Category:

Library implementation:

Stack effect:

Stack changes:

Flags:
XY registers:
Bytes used:

See also:

Stack operation (triple-length) / gqFORTH macro
CODE 3R>
3R@

DROPR
END-CODE

EXP (—nln2n3)
RET (n3|n2|nl —)

EXP: 3 elements are pushed onto the stack
RET: 1 element (3 nibbles) is popped from the stack

not affected
not affected
2

| >R R> 2R@ 2>R 2R> 3R@ 3>R

176

01/96

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors gFORTH Dictionary

3R>

Example:

CODE 3DUP (Library implementation: of 3DUP)
3>R (t—)
3R@ (—t)
3R> (t—tt)

END-CODE

ROMCONST Stringexample 6,” String ",

: Duplicate—_ROMAddr
StringExample 3DUP (duplicate ROM address on stack)
0 DTABLE@ (fetch 1st value of ROM string)
NIP (get string length as 4-bit value)

01/96 177

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

3R@

“Three-R-fetch”

Purpose:

Copies the top 3 values from the return stack and leaves the 3 values on the expression stack. 3R@
fetches the topmost value on the return stack. 3R@, 3R> and 3>R allow use of the return stack as a
temporary storage for values within a colon definition.

Category: Stack operation (triple-length) / assembler instruction
MARC4 opcode 2B hex
Stack effect: EXP (—nln2n3)

RET (n3|n2|n1l — n3|n2|nl)

Stack changes: EXP: 3 elements are pushed onto the stack
RET: not affected

Flags: not affected

XY registers: not affected

Bytes used: 1

See also: | >R R> 2R@ 2>R 2R> —-3>R 3R>

178 01/96

TEMIC

TELEFUNKEN Semiconductors

MARC4 Programmer’s Guide
gFORTH Dictionary

3R@

Example 1:

CODE 3DuUP
3>R
3R@
3R>

END-CODE

Example 2:

: ROM_Byte@

3>R

3R@
TABLE

(Library implementation: of 3DUP)
(t—)
(—t)
(t—tt)

(ROM_addr — ROM_addr ROM_byte)

(ROM_addr —)
(— ROM_addr

(ROM_addr — ROM_addr ROM_hyte)
(back to 'CALL, implicite EXIT)

01/96

179

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

“Colon”

Purpose:
Begins compilation of a new colon definition, i.e. defines the entry point of a new subroutine. Used in
the form

: <name> ... <words> ...

"’ creates a new dictionary entry for <name> and compiles the sequence between <name> and’;
into this new definition. If no errors are encountered during compilation, the new colon definition
may itself be used in subsequent colon definitions.

On execution of a colon definition, the current program counter is pushed onto the return stack.

Category: Predefined data structure
Stack effect: EXP (—)
RET (— ReturnAddress)
Stack changes: EXP: not affected
RET: The return address to the word which executes

this colon definition is pushed onto the stack.

Flags: not affected
XY registers: not affected
Bytes used: 0

See also: ; INTO .. INT7

180 01/96

TEMIC

TELEFUNKEN Semiconductors

MARC4 Programmer’s Guide

gFORTH Dictionary

Example:

: COLON-Example
3 BEGIN
1+ DUP 9=
UNTIL

(BEGIN a colon definition
(3 = initial start value
(increment count 3 —>9
(continue until condition is true
(END of DEFINITION with a SEMICOLON

)

01/96

181

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

; EXIT RTI

“Semicolon”

Purpose:
Terminates a qFORTH colon definition, i.e. exits from the current colon definition.

"7 compiles to EXIT at the end of a normal colon definition. It then marks the new definition as
having been successfully compiled so that it can be found in the dictionary.

" compiles to RTI which automatically sets the | ENABLE flag at the end of an INTO .. INT7 or
$RESET definition.

When EXIT is executed, program control passes out of the current definition. EXIT may NOT be
used inside any iterative DO loop structure, but it may be used in control structures, like:

BEGIN ... WHILE, REPEAT, ... UNTIL, ... AGAIN, and
IF ... [ELSE ...] THEN

Category: ;) : Predefined data structure
(RTI/EXIT): MARC4 mnemonic

MARC4 opcode EXIT : 25 hex RTI : 1D hex
Stack effect: EXP (—)
RET (Return address —)
Stack changes: EXP: not affected
RET: The address on top of the stack is moved into the
PC.
Flags: |_ENABLE flag Set after execution of the RTI instruction at the

end of an INTx (x=0..7) or $SRESET definition.
CARRY and BRANCH flags are not affected

XY registers: not affected
Bytes used: 1
See also: . ?LEAVE —-?LEAVE ;;

182 01/96

TEMIC

TELEFUNKEN Semiconductors

MARC4 Programmer’s Guide

gFORTH Dictionary

EXIT RTI

Example:

: Colon—-Def
3 BEGIN
1+ DUP 9 =
UNTIL

: INT5
DI
Colon-Def

(3 is the initial start value
(increment count from 3 —> 9

(Repeat UNTIL condition is TRUE

(EXIT from the colon def. with '}’

(Register contents saved automatically.)

(disable Interrupts
(execute 'colon def’
(RTI — enables all interrupts

)

)

)
)
)

01/96

183

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

“Double—Semicolon”

Purpose:

Suppresses the code generation of an EXIT or RTI at the end of a colon definition. This function is
typically used after any TABLE instruction (see ROMByte@, DTABLE@), in C computed goto
jump tables (see EXECUTE) or in the $AUTOSLEEP definition.

Category: Predefined data structure
Stack effect: EXP (—)
RET (—)
Stack changes: EXP: not affected
RET: not affected
Flags: not affected
XY registers: not affected
Bytes used: 0
See also: . ; SAUTOSLEEP, ROMByte@, DTABLE@

184 01/96

TEMIC

TELEFUNKEN Semiconductors

MARC4 Programmer’s Guide

gFORTH Dictionary

Example:

: Do_Incr
DROPR
Time_count 1*!

[N];

. Do_Decr
DROPR
Time_count 1-!

[N];

. Do_Reset
DROPR
0 Time_Count !

[N;

Jump_Table
Do_Nothing
Do_Inrc
Do_Decr
Do_Reset

;; AT FFOh

. Exec_Example (n —-)
>R ' Jump_Table R>
2* M+
EXECUTE

\ Skip Return address

\ Do not generate an EXIT

\ calculate vector address

01/96

185

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

< CMP_LT

“Less—than”

Purpose:

'Less-than’ comparison of the top two 4-bit values on the stack. If the second value on the stack is less
than the top of stack value, then the BRANCH flag in the CCR is set. Unlike standard FORTH,
whereby a BOOLEAN value (0 or 1), depending on the comparison result, is pushed onto the stack.

Category: (<) : Comparison (single-length) / gFORTH macro
(CMP_LT) : MARC4 mnemonic

Library implementation:
CODE < CMP_LT (n1 n2 — nl [BRANCH flag])

DROP (n1l—)

END-CODE

MARCA4 opcode 08 hex (CMP_LT)

Stack effect: < EXP (n1n2—)
CMP_LT EXP (nln2—nl)
both RET (—)

Stack changes: EXP: < 2 elements are popped from the stack

CMP_LT top element is popped from the stack

RET: not affected

Flags: CARRY flag affected
BRANCH flag Set, if (n1 < n2)

XY registers: not affected

Bytes used: 1-2

See also: <> = <= >= > <> D<> D>= D<=

186 01/96

TEMIC MARC4 Programmer’s Guide

TELEFUNKEN Semiconductors gFORTH Dictionary
< CMP_LT

Example:
: LESS-THAN (Check5<7and8<6and 5<5)

57 CMP_LT (57 —5 [BRANCH and CARRY set])

8 6 < (586 —5[BRANCH is NOT set])

5 CMP_LT (55—5)
DROP

01/96 187

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

<= CMP_LE

“Less-than-equal”

Purpose:

'Less-than-or-equal’ comparison of the top two 4-bit values on the stack. If the 2nd value on the stack
is less than, or equal to the top of stack value, then the BRANCH flag in the condition code register
(CCR) is set. Unlike standard FORTH, whereby a BOOLEAN value (0 or 1), depending on the
comparison result, is pushed onto the stack.

Category: (<=) : Comparison (single-length) / gFORTH macro
(CMP_LE) : MARC4 mnemonic
Library implementation: @ CODE <= CMP_LE (nl1n2—nl[BRANCH flag])
DROP (n1—)
END-CODE
MARCA4 opcode 09 hex (CMP_LE)
Stack effect: <= EXP (n1ln2—)
CMP_LE EXP (nln2—nl)
both RET (—)
Stack changes: EXP: <= 2 elements are popped from the stack
CMP_LE top element is popped from the stack
RET: not affected
Flags: CARRY flag affected
BRANCH flag set, if (n1 <= n2)
XY registers: not affected
Bytes used: 1-2
See also: D<=

188 01/96

TEMIC

MARC4 Programmer’s Guide

TELEFUNKEN Semiconductors gFORTH Dictionary

<= CMP_LE

Example:

- LESS-EQUALS
7 5 CMP_LE

7 <=

8 9 <=

(show7<=5and7<=7and 8<=9)
(75—7 [BRANCH flag NOT set])
(77— [BRANCHflag set])
(8 9 — [BRANCH and CARRY flag set])

01/96

189

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

<> CMP_NE

“Not-equal”

Purpose:

Inequality test for the top two 4-bit values on the stack. If the 2nd value on the stack is NOT equal to
the top of stack value, then the BRANCH flag in the CCR is set. Unlike standard FORTH, whereby a
BOOLEAN value (0 or 1), depending on the comparison result, is pushed onto the stack.

Category: (<>) : Comparison (single-length) / gqFORTH macro
(CMP_NE) : MARC4 mnemonic

Library implementation: @~ CODE <> CMP_NE (n1n2—nl1[BRANCH flag])

DROP (nl—)
END-CODE
MARCA4 opcode 07 hex (CMP_NE)
Stack effect: <> EXP (nln2—)
CMP_NE EXP (nln2—nl)
both RET (—)
Stack changes: EXP: <> 2 elements are popped from the stack
CMP_NE top element is popped from the stack
RET: not affected
Flags: CARRY flag affected
BRANCH flag set, if (n1 <> n2)
XY registers: not affected
Bytes used: 1-2
See also: 0<> 0= D<>

190 01/96

TEMIC MARC4 Programmer’s Guide

TELEFUNKEN Semiconductors gFORTH Dictionary
<> CMP_NE
Example:
: NOT-EQUALS (show7<>5and7<>7and 8<>9)
7 5 CMP_NE (75—7 [BRANCH flag set])
7 <> (77— [BRANCH flag NOT set])
8 9 <> (8 9 — [BRANCH and CARRY flag set])

01/96 191

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

<ROT

“Left-rote”

Purpose:
MOVE the TOS value to the third stack position, i.e. performs a LEFTWARD rotation

Category: Stack operation (single-length) / gFORTH macro
Library implementation: = CODE <ROT
ROT ROT
END-CODE
Stack effect: EXP (nl1n2n3—n3nln2)
RET (—)
Stack changes: EXP: not affected
RET: not affected
Flags: not affected
XY registers: not affected
Bytes used: 2
See also: ROT 2<ROT 2ROT

192 01/96

TEMIC

MARC4 Programmer’s Guide

TELEFUNKEN Semiconductors gFORTH Dictionary
<ROT
Example:
. TD+ \ Add an 8-bit offset to a 12-bit value
D+ \ Add the lower 8-bits (t1d2—nl1d3)
IF \ IF an overflow to the 9th bit occurs, THEN
ROT (n1d3—d3nl)
1+ (d3nl—d3nl+l1)
<ROT (d3 n1+l1 —nl1+1d3)

THEN (n3d3 —t3)

01/96 193

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

CMP_EQ

“Equal”

Purpose:

Equality test for the top two 4-bit values on the stack. If the 2nd value on the stack is equal to the top of
stack value, then the BRANCH flag in the CCR is set. Unlike standard FORTH, whereby a
BOOLEAN value (0 or 1), depending on the comparison result, is pushed onto the stack.

Category: = : Comparison (single-length) / gFORTH macro
(CMP_EQ) : MARC4 mnemonic
Library implementation:. = CODE = CMP_EQ (nln2—nl[BRANCH flag])
DROP (nl1—)
END-CODE
MARC4 opcode 06 hex (CMP_EQ)
Stack effect: = EXP
(nln2 —)
CMP_EQ EXP (nln2—nl)
both RET (—)
Stack changes: EXP: = 2 elements are popped from the stack
CMP_EQ top element is popped from the stack
RET: not affected
Flags: CARRY flag affected
BRANCH flag set, if (n1 = n2)
XY registers: not affected
Bytes used: 1-2
See also: 0<> 0= D<> D=

194 01/96

TEMIC MARC4 Programmer’s Guide

N

TELEFUNKEN Semiconductors gFORTH Dictionary
Example:
: EQUAL-TO (show7=5and7=7and 8=9)
7 5 CMP_EQ (75— 7[BRANCH flag NOT set])
7 = (77— [BRANCH flag set])
8 9 = (89 — [CARRY flag set])

01/96

195

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

> CMP_GT

“Greater-than”

Purpose:

'Greater-than’ comparison of the top two 4-bit values on the stack. If the 2nd value on the stack is
greater than the top of stack value, then the BRANCH flag in the CCR is set. Unlike standard FORTH,
whereby a BOOLEAN value (0 or 1), depending on the comparison result, is pushed onto the stack.

Category: >) : Comparison (single-length) / gFORTH macro
(CMP_GT) : MARC4 mnemonic

Library implementation: @~ CODE > CMP_GT (n1n2—nl[BRANCH flag])

DROP (nl—)
END-CODE

MARCA4 opcode OA hex (CMP_GT)

Stack effect: > EXP (n1ln2—)
CMP_GT EXP (nln2—nl1)
both RET (—)

Stack changes: EXP: > 2 elements are popped from the stack
CMP_GT top element is popped from the stack
RET: not affected

Flags: CARRY flag affected
BRANCH flag set, if (n1 > n2)

XY registers: not affected.

Bytes used: 1-2

See also: < <> = >= <> D> D>= D<> D<

196 01/96

TEMIC MARC4 Programmer’s Guide

TELEFUNKEN Semiconductors gFORTH Dictionary
> CMP_GT
Example:
: GREATER-THAN (check5>7and8>6and5>5)
5 7 CMP_GT (57—5 [CARRY set])
8 6 > (568 —5[BRANCH set])
5 CMP_GT DROP (55—)

01/96 197

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

>= CMP_GE

“Greater-or-equal”

Purpose:

'Greater-than-or-equal’ comparison of the top two 4-bit values on the stack. If the 2nd value on the
stack is greater than, or equal to the top of stack value, then the BRANCH flag in the condition code
register (CCR) is set. Unlike standard FORTH, whereby a BOOLEAN value (0 or 1), depending on

the comparison result, is pushed onto the stack.

Category: (>=) : Comparison (single-length) / gqFORTH macro
(CMP_GE) : MARC4 mnemonic
Library implementation: @~ CODE >= CMP_GE (nl1n2—nl[BRANCH flag])
DROP (n1—)
END-CODE
MARCA4 opcode: OB hex (CMP_GE)
Stack effect: >= EXP (nln2—)
CMP_GE EXP (nln2—nl)
both RET (—)
Stack changes: XP: >= 2 elements are popped from the stack
CMP_GE top element is popped from the stack
RET: not affected
Flags: CARRY flag affected
BRANCH flag set, if (n1 >=n2)
XY registers: not affected.
Bytes used: 1-2
See also: <> = <= < > <> D<> D>= D<=

198 01/96

TEMIC

TELEFUNKEN Semiconductors

MARC4 Programmer’s Guide
gFORTH Dictionary

>= CMP_GE

Example:

: GREATER-THAN-EQUALS
7 5 CMP_GE
7 >=
8 9 >=

(show7>=5and7>=7and8>=9)
(75— 7 [BRANCH flag set])
(77— [BRANCH flag set])
(89— [CARRY flag set])

01/96

199

MARCA4 Programmer’s Guide TE MIC

gFORTH Dictionary

TELEFUNKEN Semiconductors

>R

“To-R”

Purpose:

Moves the top 4-bit value from the expression stack and pushes it onto the return stack. >R pops the
EXP stack onto the RET stack. To avoid corrupting the RET stack and crashing the program, each use
of >R must be followed by a subsequent R> within the same colon definition.

Category:
MARC4 opcode:

Stack effect:

Stack changes:

Flags:
XY registers:
Bytes used:

See also:

Stack operation / assembler instruction

22 hex
EXP (n1—)
RET (—ujuijnl)

EXP: top element is popped from the stack
RET: One element is pushed onto the stack

not affected

not affected

1

| — R> 2R@ 2>R 2R> 3R@ 3>R 3R>

200

01/96

TEMIC MARC4 Programmer’s Guide

TELEFUNKEN Semiconductors gFORTH Dictionary
>R

Example:

The sequence 31 (—31)

>R 1- R> (31—21)

temporarily moves the top value on the stack to the return stack so that the second value on the
stack can be decremented.

: 2<ROT \ Move top byte to 3rd position on stack
ROT >R (d1d2d3 —d1d2hd3)
ROT >R (d1d2h d3 —d1d3)
ROT >R (d1d3 —d1hd3)
ROT R> (dih d3 —d3d1)
R> R> (d3dl1—d3d1d2)

: JUGGLE-BYTES

11h 22h 33h (— 11h 22h 33h)
2<ROT (11h 22h 33h — 33h 11h 22h)
2SWAP (33h 11h 22h — 33h 22h 11h)
20VER (33h 22h 11h — 33h 22h 11h 22h)

01/96 201

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

?DO

“Query-DO”

Purpose:
Indicates the start of a (conditional) iterative loop.

?DO is used only within a colon definition in a pair with LOOP or +LOOP. The two numbers on top of
the stack at the time ?DO is executed determine the number of times the loop repeats. The value on top
is the initial loop index and the next value is the loop limit. If the initial loop index is equal to the limit,

the loop is not executed (unlike DO). The control is transfered to the statement directly following the
LOOP or +LOOP statement and the two values are popped from the stack.

Category: Control structure / gFORTH macro

Library implementation:
CODE ?DO
OVER CMP_EQ 2>R
(S)BRA_$LOOP

_$DO:
END-CODE
Stack effect: EXP (limit index —
RET (— u]limitjindex) if LOOP is executed
RET (—) if LOOP is not
executed
Stack changes: EXP: 2 elements are popped from the stack
RET: 1 element is pushed onto the stack, if loop is executed
not affected, if loop is not executed
Flags: CARRY flag affected
BRANCH flag set, if (limit = index)
XY registers: not affected
Bytes used: 5
See also: DO LOOP +LOOP

202 01/96

TEMIC MARC4 Programmer’s Guide

TELEFUNKEN Semiconductors gFORTH Dictionary

?DO

Example:

VARIABLE Counter

: QUERY-DO
0 Counter! (Counter :=0)
6 0 DO (repeat 6 times)
10 (copy limit, index start =0)
?DO Counter 1+! LOOP (first time not executed)
Counter @ 10 >= ?LEAVE (repeat,til count. >= 10)
LOOP

01/96 203

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

?DUP

“Query-doop”

Purpose:
Duplicates the top value on the stack only if it is non zero. ?DUP is equivalent to the standard FORTH
sequence

DUP IF DUP THEN

but executes faster. ?DUP can simplify a control structure when itis used just before a conditional test
(IF, WHILE or UNTIL).

Category: Stack operation (single-length) / gqFORTH macro
Library implementation: CODE ?DUP
DUP OR
(S)BRA_$ZERO
DUP
_$ZERO:
END-CODE
Stack effect: IFTOS=0 THEN EXP (0—0)
ELSE EXP (n—nn)
RET (—)
Stack changes: EXP: A copy of the non zero top value is pushed onto the stack

RET: not affected

Flags: CARRY flag affected
BRANCH flag set, if (TOS = 0)

XY registers: not affected

Bytes used: 4-5

See also: DUP 0= 0<>

204 01/96

TEMIC MARC4 Programmer’s Guide

TELEFUNKEN Semiconductors gFORTH Dictionary
?DUP

Example:
: ShowByte (b_high b_low — b_high b_low)

DUP 3 OUT (show a byte value as hexadecimal)

SWAP (b_high b_low — b_low b_high)

?DUP (DUP and write only if non zero)

IF 2 OUT THEN (suppress leading zero display)

SWAP (restore nibble sequence)

01/96 205

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

?LEAVE

“Query-leave”

Purpose:
Conditional exit from within a control structure, if the previous tested condition was TRUE (ie.
BRANCH flag is SET). ?LEAVE is the opposite to —?LEAVE (condition FALSE).

The standard FORTH word sequence |IF LEAVE ELSE word .. THEN is equivalent to the
gFORTH sequence 7?LEAVE word ...

?LEAVE transfers control just beyond the next LOOP, +LOOP or #LOOP or any other loop structure
like BEGIN ... UNTIL, WHILE
. REPEAT or BEGIN ... AGAIN, if the tested condition is TRUE.E

Category: Control structure / gFORTH macro

Library implementation: = CODE ?LEAVE
(S)BRA _$LOOP (Exit LOOP if BRANCH set)

END-CODE
Stack effect: EXP (—)
RET (—)
Stack changes: EXP: not affected
RET: not affected
Flags: not affected
XY registers: not affected
Bytes used: 1-2
See also: —?LEAVE

206 01/96

TEMIC

TELEFUNKEN Semiconductors

MARC4 Programmer’s Guide

gFORTH Dictionary

?LEAVE
Example:
: QUERY-LEAVE
3 BEGIN (3 = initial start value
1+ (increment count 3 —>9
DUP (keep current value on the stack
9 = ?LEAVE (when stack value = 9 then exit loop
AGAIN (Indefinite repeat loop
DROP (the index
01/96 207

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

@

“Fetch”

Purpose:
Copies the 4-bit value at a specified memory location to the top of the stack.

Category: Memory operation (single-length) / gFORTH macro
Library implementation: CODE @ Y! (addr—)
[Yl@ (—n)
END-CODE
Stack effect: EXP (RAM_addr—n)
RET (—)
Stack changes: EXP: 1 element is popped from the stack

RET: not affected

Flags: not affected

XY registers: The contents of the Y or X register may be changed.
Bytes used: 2

See also: 20 3@ !

208 01/96

TEMIC

TELEFUNKEN Semiconductors

MARC4 Programmer’s Guide
gFORTH Dictionary

@

Example:

VARIABLE DigitPosition
8 ARRAY Result
: DisplayResult
7 DigitPosition !
BEGIN DigitPosition @ Fh <>
WHILE DigitPosition @ DUP
Result INDEX @
OVER
ouT
1- DigitPosition !
REPEAT

: Display
80 DO
| DUP Result INDEX !
LOOP
DisplayResult

(write ARRAY 'Result’ [7]..[0] to ports 7..0
(initialize position

(REPEAT, 'til index = Fh

(getdigitpos: 7..0

(getdigit [7] .. [O]
(DPos val — DPos val DPos
(data port — Display digit

(decrement digit & store

(REPEAT always;stop at WHILE

(write O .. 7 to ARRAY 'Result’ [0.] .. [7]

(’call’ display routine.

01/96

209

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

AGAIN

“AGAIN”

Purpose:
Part of the (infinite loop) BEGIN ... AGAIN control structure. AGAIN causes an unconditional
branch in program control to the word following the corresponding BEGIN statement.

Category: Control structure / gqFORTH macro
Library implementation: @ CODE AGAIN
SET_BCF (execute an unconditional branch)
(S)BRA _$BEGIN
END-CODE
Stack effect: EXP (—)
RET (—)
Stack changes: EXP: not affected
RET: not affected
Flags: CARRY flag set
BRANCH flag set
XY registers: not affected
Bytes used: 2-3
See also: BEGIN UNTIL WHILE REPEAT

210 01/96

TEMIC

TELEFUNKEN Semiconductors

MARC4 Programmer’s Guide

gFORTH Dictionary

Example:
: INFINITE-LOOP
3 BEGIN (3 = initial start value)
1+ (increment count 3 —>9)
DUP (keep current value on the stack)
9 = ?LEAVE (when stack value = 9 then exit loop)
AGAIN (repeat unconditional)
01/96 211

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

ALLOT

“ALLOT”

Purpose:
Allocate (uninitialized) RAM space for the two stacks and global data of the type VARIABLE or
2VARIABLE.

Category: Predefined data structure
Stack effect: EXP (—)
RET (—)
Stack changes: EXP: not affected
RET: not affected
Flags: not affected
XY registers: not affected
Bytes used: 0
See also: VARIABLE 2VARIABLE

212 01/96

TEMIC

TELEFUNKEN Semiconductors

MARC4 Programmer’s Guide
gFORTH Dictionary

ALLOT

Example:

VARIABLE Limits 7 ALLOT

VARIABLE RO 31 ALLOT
VARIABLE SO 19 ALLOT

(Allocates 8 nibbles for the)
(variable LIMITS)

(allocate space for RETURN stack)
(allot 20 nibbles for EXP stack)

01/96

213

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

AND

“AND”

Purpose:
Bitwise AND of the top two 4-bit stack elements leaving the 4-bit result on top of the expression
stack.

Category: Arithmetic/logical (single-length) / assembler instruction
MARCA4 opcode 05 hex
Stack effect: EXP (nln2—nl”n2)
RET (—)
Stack changes: EXP: top element is popped from the stack.

RET: not affected

Flags: CARRY flag not affected
BRANCH flag set, if (TOS = 0)

XY registers: not affected

Bytes used: 1

See also: NOT OR XOR

214 01/96

TEMIC

MARC4 Programmer’s Guide

TELEFUNKEN Semiconductors

gFORTH Dictionary

AND

Example:

: ERROR
3R@
3#DO

|OUT [EO]
#LOOP

(what shall happen in error case:

(show PC, where CPU fails
(suppress compiler warnings.

)

: Logical

1001b 1100b

AND
1000b <> IF ERROR THEN
1010b 0011b

AND
0010b <> IF ERROR THEN
1001b 1100b

OR
1101b <> IF ERROR THEN
1010b 0011b

OR
1011b <> IF ERROR THEN
1001b 1100b

XOR
0101b <> IF ERROR THEN
1010b 0011b

XOR
1001b <> IF ERROR THEN

01/96

215

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

ARRAY

“ARRAY”

Purpose:
Allocates RAM space for storage of a short single-length (4-bit / nibble) array, using a 4-bit array
index value. Therefore the number of 4-bit array elements is limited to 16.

The qFORTH syntax is as follows:
<number> ARRAY <name> [AT <RAM-Addr>]

At compile time, ARRAY adds <name> to the dictionary and ALLOTs memory for storage of <num-
ber> single-length values. At execution time, <name> leaves the RAM start address of the parameter
field (<name> [0]) on the expression stack.

The storage ALLOTed by an ARRAY is not initialized.

Category: Predefined data structure
Stack effect: EXP (—)
RET (—)
Stack changes: EXP: not affected
RET: not affected
Flags: not affected
XY registers: not affected
Bytes used: 0
See also: 2ARRAY LARRAY Index ERASE

216 01/96

TEMIC

TELEFUNKEN Semiconductors

MARC4 Programmer’s Guide
gFORTH Dictionary

ARRAY

Example:

6 ARRAY RawDATA AT 1Eh

- Init_ ARRAY
5
6 0DO
DUP | RawDATA INDEX !
1-
LOOP
DROP

(RawDATA[0]...RawDATA[5]

(setinitial value :=5
(array index fromO0 ... 5
(indexed store

(decrement store value

The result is: RawDATA[O] := 5 stored in RAM location 1E
RawDATA[1] := 4 stored in RAM location 1F
RawDATA[2] := 3 stored in RAM location 20

RawDATA[4] := 1 stored in RAM location 22

(
(
(
(RawDATA[3] := 2 stored in RAM location 21
(
(

RawDATA[5] := 0 stored in RAM location 23

)

01/96

217

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

AT

HATH

Purpose:

Specifies the ABSOLUTE memory location AT where either a variable will be placed in RAM, a L/U
table, string or a gFORTH word (subroutine / interrupt service routine) is forced to be placed in the
ROM area.

Category: Predefined data structure
Stack effect: EXP (—)
RET (—)
Stack changes: EXP: not affected
RET: not affected
Flags: not affected
XY registers: not affected
Bytes used: 0
See also: VARIABLE ARRAY ROMCONST

218 01/96

TEMIC

MARC4 Programmer’s Guide

TELEFUNKEN Semiconductors gFORTH Dictionary

AT

Example:

VARIABLE State AT 3

: CheckState
State @
CASE
0 OF State 1+!
ENDOF

15 OF State 1-!
ENDOF
ENDCASE
[Z]; Test_Status

: INTO_Service
Fh State !
BEGIN
CheckState
State 1-!
UNTIL
;. AT 400h

(fetch current state from RAM loc. 3)

(increment contents of variable state)

(force placement in ZERO page)

(force placement at ROM address 400h)

01/96

219

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

BEGIN

“‘BEGIN”

Purpose:
Indicates the start of one of the following control structures:

BEGIN ... UNTIL
BEGIN ... AGAIN
BEGIN ... WHILE .. REPEAT

BEGIN marks the start of a sequence that may be repetitively executed. It serves as a branch destina-
tion (_$BEGINXxx:) for the corresponding UNTIL, AGAIN or REPEAT statement.

Category: Control structure

Library implementation:. = CODE BEGIN
_$BEGIN: [EORO]

END-CODE
Stack effect: EXP (—)
RET (—)
Stack changes: EXP: not affected
RET: not affected
Flags: not affected
XY registers: not affected
Bytes used: 0
See also: UNTIL AGAIN REPEAT WHILE ?LEAVE —-?LEAVE

220 01/96

TEMIC MARC4 Programmer’s Guide

TELEFUNKEN Semiconductors gFORTH Dictionary
Example:
: BEGIN-UNTIL
3 BEGIN (increment value from 3 until 9)
1+ DUP9 = (DUP the current value because the)
UNTIL (comparison will DROP it)
DROP (BRANCH and CARRY flags will be set)
: BEGIN-AGAIN (do the same with an infinite loop)
3 BEGIN
1+ DUP
9= ?LEAVE
AGAIN

DROP

: BEGIN-WHILE-REPEAT (do the same with a WHILE-REPEAT loop)
3 BEGIN
DUP 9 <>
WHILE (REPEAT increment while not equal 9)
1+
REPEAT
DROP

01/96 221

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

CASE

“CASE”

Purpose:

Indicates the start of a CASE ... OF ... ENDOF ... ENDCASE control structure. Using a 4-bit index
value on TOS, CASE compares it sequentially with each value in front of an OF ... ENDOF pair until

a match is found. When the index value equals one of the 4-bit OF values, the sequence between that
OF and the corresponding ENDOF is executed. Control then branches to the word following END-
CASE.

If no match is found, the ENDCASE will DROP the index value from the EXP stack. The 'otherwise’
case may be handled by gFORTH words placed between the last ENDOF and ENDCASE.

NOTE: However, the 4-bit index value must be perserved across the ‘otherwise’ sequence
so that ENDCASE can drop it !

Category: Control structure

Library implementation: @ CODE CASE
_$CASE: [EO RO]

END-CODE
Stack effect: EXP (n—n)
RET (—)
Stack changes: EXP: not affected
RET: not affected
Flags: not affected
XY registers: not affected
Bytes used: 0
See also: OF ENDOF ENDCASE

222 01/96

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors gFORTH Dictionary

CASE

Example:

5h CONSTANT Keyboard
1 CONSTANT TestPortl

:ONE 1 TestPortl OUT ; (‘write 1 to the ‘TestPortl’)
: TWO 2 TestPortl OUT ; ('write 2 to the ‘TestPortl’)
: THREE 3 TestPortl OUT ; (write 3 to the ‘TestPortl’)
: ERROR DUP TestPortl OUT ; (dump wrong input to the port)
(duplicate value for the following ENDCASE; it drops one)
: CASE-Example
KeyBoard IN (request 1-digit keyboard input)
CASE (depending of the input value,)
1 OF ONE ENDOF (one of these words will be acti—)
2 OF TWO ENDOF (vated.)
3 OF THREE ENDOF
ERROR (otherwise ...)
ENDCASE (n—)

01/96 223

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

CCR!

“CCR-store”

Purpose:
Store the 4-bit TOS value in the condition code register (CCR).

NOTE: All flags will be altered by this command !

Category: Assembler instruction
MARC4 opcode OE hex
Stack effect: EXP (n—)
RET (—)
Stack changes: EXP: 1 element is popped from the stack

RET: not affected

Flags: CARRY flag set, if bit 3 of TOS was set
BRANCH flag set, if bit 1 of TOS was set
|_ENABLE flag set, if bit 0 of TOS was set

XY registers: not affected
Bytes used: 1
See also: El DI CCR@ SET_BCF CLR_BCF

224 01/96

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors gFORTH Dictionary

CCR!

Example 1:

- INT5 (timer interrupt service routine)
CCR@ (save the current condition codes)
Inc_Time (call procedure.)
CCR! (restore CCR status)

(RTI & Enable interrupts)

NOTE: CCR@/! and X/Y@/! will be inserted in INTx-routines by
the compiler automatically.

Example 2:

CODE ElI (enable all interrupts)
0001b CCR!
END_CODE

01/96 225

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

CCR@

“CCR-fetch”

Purpose:

Save the contents of the condition code register on TOS.

Category: Assembler instruction

MARC4 opcode 0D hex

Stack effect: EXP (—n)
RET (—)

Stack changes: EXP: 1 element is pushed onto the stack
RET: not affected

Flags: not affected

XY registers: not affected

Bytes used: 1

See also: CCR! EI DI

226 01/96

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors gFORTH Dictionary

CCR@

Example:

1 CONSTANT Portl

: 7ERROR (‘error routine: are the numbers equal)

<> |F (if unequal, then write Fh to port1.)
Fh Portl OUT
THEN (two digits are dropped from the)

: ADD_ADDC_TEST (add up to 8-bit numbers)
Ah Ch + (1012 — 6 + CARRY flag set)
CCR@ SWAP (6 —[C-Blflags] 6))
6 ?7ERROR (check correctresult (6 6 —))
CCR! (restore CARRY flag setting)
Dh 6h +C (13 6 [CARRY] — 4 + CARRY flag set)
4 7ERROR (check correctresult (44 —))

01/96 227

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

CLR BCF

“Clear BRANCH- and CARRY-Flag”

Purpose:
Clear the BRANCH and CARRY flag in the condition code register.

Category: gFORTH macro
Library implementation: =~ CODE CLR_BCF
0 ADD (reset CARRY & BRANCH flag)
END-CODE
Stack effect: EXP (—)
RET (—)
Stack changes: EXP: not affected
RET: not affected
Flags: CARRY flag reset
BRANCH flag reset
XY registers: not affected
Bytes used: 2
See also: SET _BCF TOG_BF

228 01/96

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors gFORTH Dictionary

CLR BCF

Example:
8 ARRAY Result (8 digit BCD number array definition)
: DIG+ (add 1 digit to an 8 digit BCD number)
Y! CLR_BCF (digit LSD_addr — digit ; clear flgs)
8 #DO (loop maximal 8 times.)
[YJl@ +C DAA (add digit & do a decimal adjust.)
[Y-]' O (store; add 0 to the next digit.)
—?LEAVE (if no more carry, then leave loop.)
#LOOP
DROP (last O isn't used.)
(EXIT —return)
: ADD-UP-NUMBERS
Result 8 ERASE (clear the array.)
15 #DO (loop 15 times.)
9 Result [7] (put address of last nibble to TOS,-1)
DIG+ (add 15 times 9 to RESULT)
#LOOP (BRANCH conditionally to begin of loop)
; (result: 9*15=135)

01/96 229

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

CODE

“CODE”

Purpose:

Begins a gFORTH macro definition where both MARC4 assembler instructions and gFORTH words
may be included. Macros defined as CODE ... END-CODE are executed identically to words created
as colon definitions (i.e. :...;)—exceptthat no CALL and EXIT is placed in the ROM. The macro
bytes are placed from the compiler in the ROM to every program sequence, where they should be
activated. MACROs are often used to improve run—time optimization, as long as the macro is used by
the program not too often.

NOTE: qFORTH word definitions that change the return stack level (>R, 2>R, ... 3R>,
DROPR) require CODE ... END-CODE implementations, because the return address
would no more be available.

Category: Predefined structure
Stack effect: EXP (—)
RET (—)
Stack changes: EXP: not affected
RET: not affected
Flags: not affected
XY registers: not affected
Bytes used: 0
See also: END-CODE colon definition (:) EXIT ()

230 01/96

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors gFORTH Dictionary

CODE

Example:

5 CONSTANT Port5
3 ARRAY ReceiveData (12-bit data item)

(CODE to shift right a 12-bit data word)
CODE ShiftRDBiIts

ReceiveData Y!

[Yl@ ROR [Y]!

[+Y]@ ROR [Y]! (rotate thru CARRY)
[+Y]@ ROR [Y]!
END-CODE
: Receive_ Bit
ReceiveDate Y! (write data to the array:)
5[Y]! Ah[+Y]! 1 [+Y]!
Port5 IN SHL (Read input from IP53)
ShiftRDBiIts (shift ‘ReceiveData’ 1 bit right)

01/96 231

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

$ INCLUDE

“Dollar-Include”

Purpose:
Compiles gForth source code from another text file. Used in form
$INCLUDE <filename>
$INCLUDE loads a gForth program from an ASCII text file. Such a source text file may be created
using any standard text editor.

$INCLUDE is "state—smart” and may be used (together with a filename) inside of a colon definition.
The file name extension 'INC’ is default and may be omitted.

Category: Compiler

Stack changes: EXP (--)
RET (--)

Flags: not affected

232 01/96

TEMIC MARC4 Programmer’s Guide

TELEFUNKEN Semiconductors gFORTH Dictionary

$ INCLUDE

Example:

The sequence $INCLUDE MYPROG.SCR causes the gForth source code in file MYPROG.SCR
to be compiled.

01/96 233

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

$RAMSIZE SROMSIZE

“Dollar-RAMSize” " Dollar—-ROMSize”

Purpose:
The MARC4 qFORTH compiler’s behavior during compilation may be controlled by including

$-Sign directives within the source code file. These $-sign directives consist of one keyword which
may be followed by at least one parameter.

Category: Compiler word / directives

$RAMSIZE: Specifies the RAM size of the target processor. Default size is
255 nibbles (from $00 .. $FF). Some processors contain 253
nibbles only.

$ROMSIZE: Specifies the ROM size of the target processor. Default size is

4.0K (from $000 .. $FFF) ;
The constants are as follows: 1.0K = 3Fh, 2.5K = 9Fh and
4.0K = FFh. With 'SROMSIZE’ you can access this 8-bit constant

in your source program.

234 01/96

TEMIC

TELEFUNKEN Semiconductors

MARC4 Programmer’s Guide
gFORTH Dictionary

$RAMSIZE SROMSIZE

Example:

$INCLUDE Timer.INC

(Predefined constants:

255 2CONSTANT $RAMSIZE
1.5k 2CONSTANT $ROMSIZE

VARIABLE RO 27 ALLOT
VARIABLE SO 19 ALLOT

)
(for 253 RAM nibbles [3 auto sleep])
(1535 ROM bytes — 2 b. for check sum)
(resulting constant [SROMSIZE] = 5Fh)
(return stack: 28 nibbles for 7 level)
(data stack: 20 nibbles)

01/96

235

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

CONSTANT

“CONSTANT”
Purpose:
Creates a 4-bit constant; implemented in a qFORTH program as:
n CONSTANT <name>
with- 0<=n<=15 or O0<=n<=Fh or 0000b <=n<=1111b

Creates a dictionary entry for <name>, so that when <name> is later ‘executed’, the value nis left on
the stack.This is similar to an assembler EQUate statement, in that it assigns a value to a symbol.

Category: Predefined data structure
Stack effect: EXP (—n) onruntime.
RET (—)
Stack changes: EXP: not affected
RET: not affected
Flags: not affected
XY registers: not affected
Bytes used: 0
See also: 2CONSTANT VARIABLE 2VARIABLE

236 01/96

TEMIC

TELEFUNKEN Semiconductors

MARC4 Programmer’s Guide
gFORTH Dictionary

Example:
4h CONSTANT #Nibbles (value of valid bits)
20 2CONSTANT Nr_of Apples (value > 15 [Fh])
03h 2CONSTANT Nr_of Bananas
8 CONSTANT NumberOfBits (hexadecimal, decimal or)
0011b CONSTANT BitMask (binary.)
Example:
Nr_of Apples Nr_of Bananas
D+ (calculate nr of fruits)
DUP BitMask AND DROP (lower nibble: odd or even ?)
IF
NumberOfBits (do it with every bit:)
#DO ... #LOOP

THEN

01/96

237

MARCA4 Programmer’s Guide TE MIC

gFORTH Dictionary TELEFUNKEN Semiconductors
D+
“D-plus”
Purpose:
D+ adds the top two 8-bit values on the stack and leaves the result on the expression stack.
Category: Arithmetic/logical (double-length) / qFORTH colon

definition

Library implementation: : D+ ROT (d1h d1l d2h d2l — d1h d2h d2| dil)

ADD (d1lh d2h d2l d1l — d1h d2h d3l)
<ROT (d1h d2h d3l — d3l d1h d2h)
ADDC (d3ld1lh d2h — d31 d3h)
SWAP (d31d3h —d3)
Stack effect: EXP (d1d2—d_sum)
RET (—)
Stack changes: EXP: 2 elements are popped from the stack
RET: not affected
Flags: CARRY flag set on overflow on higher nibble
BRANCH flag = CARRY flag
XY registers: not affected
Bytes used: 7
See also: D- 2! 2@ D+!' D-! D2/ D2*

238 01/96

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors gFORTH Dictionary

D+

Example:

: DC Double Add

10h 0 5 D+ (result: — 15 ; no flags)
18h D+ (result: — 2D ; no flags)
14h D+ (result: — 41 ; no flags)
COh D+ 2DROP (result: — 01 ;C&Bflag)

01/96 239

MARC4 Programmer’s Guide TE MIC
gFORTH Dictionary TELEFUNKEN Semiconductors

D+

“D-plus-store”

Purpose:
ADD the TOS 8-hit value to an 8-bit variable in RAM and store the result in that variable. On function

entry, the higher nibble address of the variable is the TOS value.

Category: Arithmetic/logical (double-length) / gFORTH colon
definition
Library implementation: : D+! Y! (nh nl address — nh nl)
[+tY]@ + (nh nl — nh nl’)
[Y-]! (nh nl—nh)
[YI@ +c (nh —nh’)
[Y]! (nh"—)
Stack effect: EXP (d RAM_addr —)
RET (—)
Stack changes: EXP: 4 elements are popped from the stack
RET: not affected
Flags: CARRY flag set on overflow on higher nibble
BRANCH flag = CARRY flag
XY registers: The contents of the Y register will be changed.
Bytes used: 8
See also: The other double-length qFORTH dictionary words, like
D-D+ 2! 2@ D-! D2/ D2* D< D> D<> D= D<=D>= D0=
DO<>

240 01/96

TEMIC MARC4 Programmer’s Guide
TELEFUNKEN Semiconductors gFORTH Dictionary

D+

Example:

2VARIABLE count AT 43h
: Double_Arithm

13h count 2! (RAM [43]=1; RAM [44] =3)
count 2@ (—13)
2DROP

55h count D+! (68 in the RAM ; no flags)
b5h count D+! (1D inthe RAM ; C & B flag)

01/96 241

	Contents
	Hardware Description
	MARC4 Architecture
	General Description
	Components of MARC4 Core
	Program Memory (ROM)
	Data Memory (RAM)
	Registers
	ALU
	Instruction Set
	I/O Bus
	Interrupt Structure

	Reset
	Sleep Mode
	Emulation
	Stand Alone EPROM Boards
	MARC4 Emulation Mode and Interface Signals

	Instruction Set
	MARC4 Instruction Set
	Introduction
	Description of Used Identifiers and Abbreviations
	Stack Notation

	The qFORTH Language - Quick Reference Guide
	Arithmetic/Logical
	Comparisons
	Control Structures
	Stack Operations
	Memory Operations
	Predefined Structures
	Assembler Mnemonics

	Programming in qFORTH
	Why Program in qFORTH ?
	Language Overview
	The qFORTH Vocabulary:
	Words and Definitions

	Stacks, RPN and Comments
	Reverse Polish Notation
	The qFORTH Stacks
	Stack Notation
	Comments

	Constants and Variables
	Constants
	Look-up Tables

	Variables and Arrays
	Defining Arrays

	Stack Allocation
	Stack Pointer Initialisation

	Stack Operations, Reading and Writing
	Stack Operations
	Reading and Writing (@, !)
	Low Level Memory Operations

	MARC4 Condition Codes
	The CCR and the Control Operations

	Arithmetic Operations
	Number Systems
	Addition and Subtraction
	Mixed-length Arithmetic
	BCD Arithmetic
	Summary of Arithmetic Words

	Logicals
	Logical Operators

	Comparisons
	< , >
	<= , >=
	<> , =
	Comparisons Using 8-bit Values

	Control Structures
	Selection Control Structures
	Loops, Branches and Labels
	Branches and Labels
	Arrays and Look-up Tables
	Look-up Tables
	TICK and EXECUTE

	Making the Best Use of Compiler Directives
	Controlling ROM Placement
	Macro Definitions, EXIT and ;;
	Controlling Stack Side Effects
	$INCLUDE Directive
	Conditional Compilation
	Controlling XY Register Optimisations

	Recommended Naming Conventions
	How to Pronounce the Symbols

	Book List
	Recommended Books
	General Interest

	qFORTH Language Dictionary
	Preface
	Introduction
	Stack Related Conventions
	Flags and Condition Code Register
	MARC4 Memory Addressing Model
	Short Form Dictionary
	Index

